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A B STRACT 
Spectra of LED devices show a noticeable temperature and current dependence. Often this behaviour can 

be neglected. However, some applications like spectrometry or narrow band imaging take advantage of 

the spectral characteristics of LEDs. In such cases knowledge about the spectral behaviour is reievant. 

This articie describes a measurement setup for investigating the inflvence of temperature and cvrrent on 

the spectral radiation of LED. Results from measurements are presented. Appropriate mathematical func-

tions for modelling LED spectra are discussed and their applicability is rated. A new formalism for model-

ling of LED spectra in consideration of current and temperature is derived. With this approach, the predic-

tion accuracy of the spectral behaviour is increased significantly. 

KEYVVORDS: LED, Iight emitting diodes, spectral analysis, temperature, cvrrent, modelling 

1. Introduction 

LED devices have developed rapidly over the last 
years with an average improvement of flux per package 

of 20x per decade~). This has lead to an enormous im-

provement of the luminous e~icacy and output power 

per device. Thus, LED devices have become attractive 

for new applications, not only for signage but also for 

illumination. For general illumination the small spec-

tral bandwidth is rather unfavourable and leads to the 

development of techniques for spectral broadening like 

stimulation of phosphors. However, other applications 

like machine vision profit from this nearly monochro-

matic spectrum, for example by using spectrally opti-

mised lenses. Another usage of LED illulninations is for 

spectroscopic applications like narrow band imaging 

which also takes advantage of the narrow spectral 
characteristic. The spectral behaviour of LEDS for these 

applications cannot be neglected. The dependence of the 

spectrum on operating conditions and on environment 

ought to be known. This paper describes research done 

to describe and model this dependence. 

the data sheet information. To specify the spectral be-

haviour, further measurements are necessary. 

By using a spectrometer, it is easily possible to meas-

ure the spectral radiometric output of a sourde. How-

ever, cost considerations often forbid the integration of a 

spectrometer in the light source for practical purposes. 

If the dependences of LED spectra on environmental 
conditions are to be considered, the appropriate model-

ling of those dependences is possible. 

For this purpose it would be desirable to derive the 

spectral characteristics strictly from a physical device 

model. The generation-reconrbination equilibrium de-

pends on two processes: the carrier distribution of the 

allowed states in the semiconductor and the density of 

states in the semiconductor2). The output spectrum 0L 

an LED is then controlled by the two terms tempera-

ture T and magnitude 0L the bandgap ~ of the semi-
conductor. Equation (1) depicts this proportionality. 

I(E) 0~ r, e g ' k,T ･ (1) 

2. Background 
The spectra of recent LED devices depend on operat-

ing current or voltage and on temperature. This de-

pendence is often not precisely characterised in the de-

vice data sheets. Not all manufacturers specify the 

spectral behaviour. Often, only the parameter doninant 

wavelength ;~l is used for characterisation. It is not pos-

sible to derive the shape of the radiation spectrum from 

Theoretically, the spectral behaviour shown in Figure 

1 is expected. In accordance with this theoretical predic-

tion, measurements show that the spectral characteris-

tic depends significantly on the junction temperature 

and the operating voltage of the diode3)~. However, ac-

tual devices have a diEferent characteristic which can-

not be explained with this first order model. An exam-

ple is shown in Figure 2. 
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Flgure 7 Spectra of an LED HLMP-CM31-MOODD at iLED=i mA 

and ~=20.7'C (dashed line) and at i~ED=20 mA and 

~=33.7'C (solid line) in normalised representation 

4. Modelling 
4.1 Model fimctions 

Mathematically based models should be investigated 

to approximate LED spectra phenomenologically be-
cause no physical model has been reported which ap-

proxi:nates LED spectra sufficiently. Since real spectra 

are mostly non-symmetrical this behaviour ought to be 

considered. Models from the literature3)9) should be 

compared to the found models. Possible functions 
should meet several requirements, such as: 

･ have a shape and parameterisation that is appro-
priate, 

･ approximate measured spectral values with good 

accuracy, 

･ be evalu~tted easily, 

. possess parameters which can be interpreted di-
rectly (e.g. peak wavelength), 

. possess parameters which can be obtained easily 

from spectral measurement. 

The functions shown in Table 3 were examined. 
Equations (3) and (6) are symmetric and therefore in-

appropriate for the mostly asymmetric spectra. We list 

them nevertheless because of their multiple usage in 
literature. Equation (12) approximates spectra very 

well but the parameters cannot be interpreted directly. 

The function is defined piecewise. An extension of this 

model for varying temperatures and currents is not 
possible. Therefore it is not suitable here. With this in 

mind, Equation (5) is not easy to formahse either. One 

possibility to consider the asymmetry is to split the 

equation into two ranges - one to the left of the maxi-

mum and one to the right as done in Equations (4) and 

(10). Also here the mathematical formalism is cunrber-

some for optimization because the functions are not uni-
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Table 3 Examined approximation fLlnctions 

Funetion ~~me Functio~l f(;~) 

Gaussi~~3) 
f(~)-A e ( 2 - - J i-c ~r {3) 

S p] i~ 

Gauss;~n 

_(i:L)2 

f (j.) = A ' e ~r 

with ;r = W fo~ ~ < C , W = W1,. otheil~*/ise 

(4) 

Sum of 
Gaussians 

( J~~ ~yl i2 )2 -l ( 2 /~'-C ;'-C 
f(~)= Al ' e + A1 ' e -

<5) 

Seeend or~er 
~orentz{~n5) 

f (/_) = A 2 
[ 2 )J [ l+ ;~-C W (6) 

~ogistie 

power ~eak 

;'-c+'r In(s~  ~s~! J f(~) ~ ;r ~+e 
S 

-S-~ k-C+W~n(S) 

. e ~~* 
S+1 

'(S+~) s (7) 

Asymmetric iogis~ie pe~~ r - s ~s-~ -i j c~'~:Et~s~ 

f (;')s; A'L~+ e ' S-s '(S +~)sF1 .e 
~-(,+ i~ ~11~S) 

} (8) 

f (~) * A 

Pearsor~ V ( )f s [ 2 1 j] ~+~c 2s_l 
;;' 

{9) 

A 

S pl i~ 

Pe~rson V l 

f (~) = 

wi~~ W = ~y~ , 

l s [ ' = I];= ' ( )[ ~+ l'C 2s1 
W 

S=S~ for;~<Cand W ;y2 S S ot~e~Yise 

(~o) 

f (;.) = A 
Asymm$trie Doub e 

sigmoidai 
~~'* I~' 

~+e SE 

[ 1rJ 
~- l ~"-c ~~ 

1+e 

(1 ~ ) 

Pieeewfse 3f~ e~def 

poiynonli~i {spiine) 

piecewisel f A - a3x3 + (~ ,;2 +alx+ ao ( )- .. 
~i$eewlse defl~l~ior~ fof n raR~es xk-1 ~ x < xk k I n 

(~2) 

formly continuous. In Equation (11), two skew parame-

ters are used and the parameters cannot be interpreted 
directly. The remaining Equations (7), (8) and (11) are 

eligible for modelling LED spectra. Parameters A and C 

can be interpreted directly as intensity and peak wave-

length respectively for these equations. 

4.2 Model evaluation 

The stated requirement of simple calculation of the 

fitting parameters mentioned in the previous chapter 

cannot be satisfactorily fulfilled. Parameter computa-

tion is non-trivial for some of these functions as they are 

non-linear and cannot be Imearised by common meth-
ods. For this reason, methods of non-linear optimization 

such as programs MapleT~~ 11 with Global Optimization 

Toolbox and fityk 0.8.3 are used. Due to this :nethodol-

ogy, the results are not analytically optimal. However, 

the findings show that the results are stable and repro-

ducible. The relative 'least squares R-value' SS~ was 

calculated for the evaluation of the fitting quality be-

tween fit and measurement data. Smaller values repre-

sent a better fit. The results of the investigation for an 

LED type HLMP-CM31-MOODD are depicted in Table 4. 
Values written in brackets cannot be interpreted di-

rectly. They are shown only for reference. 
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Table 4 Parameter findings for Equations (3), (6), (7), (8), (9) and 

(11) for an LED HLMP-CM31-MOODD at iLED=20mA and 

~=33.7'C 

Parameter 
Equation 

A c W s 
Re ative SSR 

Eq (3) 3217 o 524 54 (21 59) NA o 392 

Eq (6) 3622 6 522 48 (28.29) NA 71 g5･10-3 

Eq (7) 3556 5 520 27 (8.33) (2,02) 4 2i lo~3 

Eq (8) 3482 6 520 3T (13.75) (2 ~3 7) 2 g7･ I OS 

Eq (9) 3490 o 522 57 (19.25) (3.72) 62 93.10~s 

Eq. (i I ) (i26742) (514,g4) (3~o) (S1=7,5i ), (S2=1 5~s9) 2 i5.10-3 

Table 5 Parameter findings for Equation (7) for difterent LEDS at 

i~ED=20mA and ~=33.7'C 

M~nufacturer LED type A c W s Relative SSR 
Avago Technologies 

HLMP-CE30-NOOOO 32sl 9 500 5 6.90 2 i9 1 2~1 O'a 

Avag o 
Technologies HLMP-CM31-MOODD 3556 5 520 3 8 33 2.02 

4 21 I0-3 

Niehia NSPG5iOS 3s82.3 521 4 7 07 2 27 1 37.10'3 

Stanley EBG5304S 1 971 ~5 555 5 5 65 1 68 9 1 5.1 0-3 

Vishay TLCPG5i02-DD2 2833 9 5e0.9 5 oo 0.53 5 05･i04 

Multiple experlinents with diff:erent LEDS and differ-

ent semiconductor systems show that Equation (7) is 

most suitable for approximating LED spectra, hence it 

is subsequently used. Table 5 displays parameter find-

ings for Equation (7) for a mmrber of LEDS driven with 

a constant current of ~ED=20 nLA and a junction tem-

perature of 3iJ =33.7'C. The parameters A and Ccan be 

interpreted directly in this equation. 

4.3 Model extensiron 

The model described above allows the approximation 

of the spectral behaviour of an LED at one operating 

point defined by the operating current iIJ~:D and the 

junction temperature ~. It would be desirable to ex-

pand the model for arbitrary operating currents and 

junction temperatures. Here it must be regarded that 

the spectral characteristic depends on the operating 

current and junction temperature. However the junc-

tion temperature itself also depends on the loss power. 

To model this behaviour, parameters A, C, Wand Sof 

Equation (7) were calculated for each current-
temperature setpoint. Table 6 shows determined values 

of parameters A, C, Wand S for the different current-

temperature combinations of one device. It is obvious 

that these parameters can be modelled as functions of 

operating current tLED and junction temperature ~-
Equations (13) to (16) are suitable for modelling of the 

associated parameters A, O, Wand S 

A(T,i) = ao ' T*T ' i"i """"' 

C(T, i) = co + CT ' T + ci ' Iog(i) 

S(T,i) = so + ST ' T + si ' Iog(i) ' 

W(T,i) = wo + WT ' T + wi ' i 

･ (13) 

･ (14) 

･ (15) 

･ (16) 

Parameters [ao, aT, aJ in Equation (13), [co, cr, CJ in 

Equation (14), [so, sT, SJ in Equation (15) and [wo, v'T, w~ 

in Equation (16) can be calculated by using methods of 

non-linear optimization. For the example shown in Ta-

ble 6, parameter values shown in Table 7 can be derived. 

Utilizing Equations (13) to (16), it is now possible to 

predict the parameters A, C, Sand Wfor arbitrary iLED / 

~ setpoints. Figures 8 and 9 depict the position of the 

peak wavelength in dependence on the operating cur-

Table 6 Parameter findings for Equation (7) for an 

CM31-MOODD at diferent iLED and ~ 

LED HLMP-

LED operating clJrrent iLED 

1 mA 2 mA 5 mA 10 mA 20 mA 

~ ['C] Parameter ~ ['C] Parameter ~ ['c] parameter ~ [*C] Parametef ~ ['C] Parameter 

A=267 5 A=53 1 ~ A=121l~; A=2127.0 ~=3555 5 

e~532.1 C*5297 c=52s.5 C~523 7 ,~520 3 
20 7 21 4 23 4 26 9 33 7 

v,~7 23 vv~7 37 W,:7 71 M,~8 04 Vl,~8 33 

s=2.22 s=2 20 s=2 14 s=2 oG s*2 02 

A=245 5 ~=492 1 A*1 1 33 9 A=2000 ~3 A=3354.7 

c~532 7 c*530 2 c=526 9 c~524.1 C~521 1 
40 7 41 4 43 4 46 9 53 7 

uv~7 56 Vl,~7 64 vv~8 oo Yv~8 41 Vy~B 85 

s=2 12 s=2 12 s=2 05 ~~1 ~37 s=i 88 

A=223 1 A=450 6 A=i04e.i A=1 860.3 ~*31 30 7 

c*533 3 c,;530.9 C=527 5 c~524 a c*521 9 
60 T 61 4 63 4 ee9 73 7 

vv~7 97 W:8 03 vv~8 40 vv:8 82 uv~g 37 

~;*2 oO s*2 ol S･i 94 s~i 86 S~~ 76 

,4=202.1 A=41 1 ~; A*968 5 A･1 732 1 A･2949 7 

c~534.1 (~53 1 e c=528A (~525.7 I~522 9 
80 7 81 4 83 4 86 9 93 7 

M,:8,42 W;g.52 Yv:8 84 W,~g 30 W~3 92 

s=1 89 ~1 88 s=1 83 ~~l 75 s=1 64 

A=187 8 A=3B8 1 A=930 4 A=1 729 2 ~=331 1 4 

(~534.9 e~532 7 C･529 5 I~526 8 c*524 1 
1 oo 7 101 4 103 4 106 9 1137 

H,~8 g2 Vy~g~)5 W:9.35 W~g 83 vv~1 o 48 

s=2 22 s=2 20 s=2 14 s~2.0e s~2.02 

Table 7 Parameter findings for Equations (13) to (1 6) for the val-

ues from Table 6 

Equation Parameter value 

Eq (13) a0=161221 5 aT=0 845 a=-O. i 37 

Eq (14) c0=504 1 CT=0.391 ･1 0~1 a=-3 946 

Eq (i 5) s0=i .964 sT=-O 553･1 0~2 si=-O 569.1 0~1 

Eq (1 6) w0=6.670 wT=0.225 VVi::55.47 

rent ~ED and the junction temperature ~ calculated 
from Equation (14) as an example. 

By substituting each parameter of Equation (7) with 

its associated Equations (13) to (16), Equation (17) is 

obtained, which only depends on the operating current 

tLED and the junction temperature ~. Hence, it is possi-

ble to predict the characteristic of the emitted spectrum 

at an arbitrary current-temperature setpoint. 

( S(T' i) J = '[ A-c(T'i)+w(T'i)'In(s(T'i)) 

A(T l) 1+e 
f T'i'~) w(Tli) 

A-C(T,i)+W(T, 

W(T, 

)･lu(S(T,i)) 

･e 

) 

-S(T,i)-l 

s(T,i)+1 

[ l ' S(T,i) + I s(T,i) 

S(T,i) 

･ (17) 
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an LED canuot be measured during operation but 
rather should be known precisely. Further work will 

investigate how the parameters depend on the lifetime 

of LED. 

Symbols and nomenclature 

<Symbol> 

A 
C 

L{~ 

HVVHM 
iLED 

Ad 

flp 

P. 
I~}h 

S 
SS~ 
T 

A 7{;j* 

~ 
uLED 

W 
References 

<E xplanation> 

Modelling parameter 'amplitude' 
Modelling parameter 'centre'(equals to 

~p for most functions) 

Energy of semiconductor bandgap 

Half width half maxinunl 

LED operating cIJLrrent 

Wavelength 
Dominant wavelength, for definition 
seelo) 

Peak wavelength 

Loss power 
Thermal resistance of LED case 

Modelling parameter 'skew' 

Least smn of squared residuals 

Tem perature 

Temperature difference between junc-

tion and ambient 

Junction temperature 

LED voltage 
ModelLing parameter 'width' 
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