
Extended Constraint Management
for Analog and Mixed-Signal IC Design

Andreas Krinke∗ Maximilian Mittag† Göran Jerke† Jens Lienig∗
krinke@ifte.de maximilian.mittag@de.bosch.com goeran.jerke@ieee.org jens@ieee.org

∗Dresden University of Technology, Dresden, Germany
†Robert Bosch GmbH, Reutlingen, Germany

Abstract—The consideration of a growing number of design
constraints is becoming a bottleneck in the design of analog
and mixed-signal integrated circuits and is blocking more, much-
needed automation in this area. In this paper, we propose a
solution to these issues with a new methodology for constraint
propagation and transformation. This technique allows designers
and software tools to consider all relevant constraints when
modifying a design, regardless of where these constraints were
originally created. We integrated our ideas in an industrial
design flow. The implementation of an electrical constraint type
demonstrates the practical relevance. With constraints of this type
the ON resistance of power stages in smart power ICs can be
limited for the first time.

I. INTRODUCTION

The design of analog and mixed-signal integrated circuits
(AMS ICs) is dominated by manual, non-automated tasks,
compared with the extensive automation of digital design.
The lack of automation is essentially caused by the great
number of constraints that need to be considered during analog
design [1]. These constraints define mandatory requirements
on design parameters. On the one hand, constraints can
capture the engineer’s intent, e.g., the relative positions and
projected cell sizes in a floorplan. On the other hand, they can
express parameter requirements. An example is the maximum
permissable voltage drop (IR drop) across a wire for module
to work properly. Long-time, analog design constraints used to
be implicit, existing only as so-called “expert knowledge” or,
at best, as informal notes on a schematic sheet [2]. Recently,
the concept of constraints in AMS design has been formalized
and increasingly integrated into various design tools (e.g. [3],
[4]). Using these tools, one can assign constraints to elements
in the currently edited cell. These constraints become part of
the design data and can be verified automatically.

The major drawback of this approach is the limited visibility
and verifiability of constraints. Currently, constraints are gener-
ally only visible and verifiable in the original cell—where they
were created in the first place. However, so-called hierarchical
constraints (see next section) reference elements in other cells
(e.g. nets and instances) and, therefore, are of relevance outside
of the original cell. The same applies to constraints that do
not use the design hierarchy for information transfer, such as
the connectivity-based IR drop constraint mentioned earlier.
In both cases, designers and software tools do not have the
information at hand as to whether design decisions in the current
cell influence constraints declared in some other cell. This
problem is solved by propagating constraints throughout the
design. Transformation as an extension of this concept allows
the conversion of constraints and therefore, the derivation of
additional information.
This work was supported by the German Ministry of Education and Research
(BMBF) under grant 01M3195B.

TOP

I1 I2

I11 I12 I21

c1

c2

Figure 1. Constraint c1 is local: The referenced instance I1 belongs to the
same cell as c1 itself. Constraint c2 is hierarchical; it belongs to cell TOP
and refers to instance I21, which does not belong to TOP. Modifying I2’s cell
might influence c2. Pins, instance terminals and nets are not shown in this
graph.

A. State of the Art

Modern software tools for the design of AMS circuits
(e.g. Cadence Design Framework II [3]) support the common
hierarchical design approach that breaks the circuit into cells.
The design may contain multiple instances (copies) of each
cell. The integrated constraint management systems allow users
to create new constraints that belong to a specific cell. Each
constraint refers to a set of design elements (e.g. instances and
nets), called constraint members. Each of these members can
be either local or hierarchical. While local members belong
to the cell of the constraint itself, hierarchical members are
located in cells further down in the design hierarchy (see Fig. 1).
In addition, every constraint is of a specific type that defines
the parameters of all derived constraints and the verification
procedure used to check if those constraints are met (see
Section II). An example is the resistance constraint type used
to constrain the resistance of wire segments. All constraints
of this type have to provide maximal and minimal resistance
values and are verified using a type-specific resistance model.

Current constraint management systems, e.g. the one in-
tegrated in [3], support only connectivity-based propagation.
Furthermore, it is not possible to step over specific devices
that are connected by a net. Constraint transformation is
not supported either. Today’s verification tools, e.g. Mentor
Graphics’ Calibre PERC, support topological constraints. They
check the existence of circuit structures (e.g. for ESD protection)
that are required by design rules [5]. However, this verification
step does not provide assistance during the process of designing
a circuit.

B. Our Contributions

In this paper, we present two extensions to constraint man-
agement systems: (1) Propagation distributes constraints based
on connectivity across the design hierarchy. This information
is thus available in all relevant cells. (2) Transformation allows
the automatic creation of new constraints from a single original

Andreas Krinke
Schreibmaschinentext
© IEEE 2013. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribution. The final version was published in the Proceedings of the 21th European Conference on Circuit Theory and Design (ECCTD 2013), Dresden, Germany, September 2013.



(a) (b) (c)

Figure 2. The three types of constraint propagation. Top-down propagation
(a), bottom-up propagation (b) and bottom-up top-down propagation (c) [2].
Cells with hierarchical constraints are drawn as ; the current cell is marked
by .

one. In combination, both methods enable the visibility and
verifiability of constraints in all cells, where they potentially
have influence on design decisions. Thus, all constraints can
be considered continuously—regardless of where in the design
hierarchy they were originally created. To demonstrate the
practical relevance of our approach, we implemented an RON
constraint type for the first time. Constraints of this type
enable the ON resistance between package pins to be limited.
Such constraints are transformed and propagated based on pin
connectivity.

II. PROBLEM FORMULATION

A constraint c ∈ C(cell) belongs to the context of a specific
cell, represented by the set C of all its constraints. They are
defined as tuple c = (t(c),M(c), P (c)) where t(c) ∈ T is the
constraint type, M(c) = {m1, . . . ,mj} is a set of constraint
members and P (c) is a tuple (p1, . . . , pk) of specific values
for all parameters of t(c). Members are design elements to
which c has been assigned. Each member can be either local or
hierarchical. Local members belong to the same cell as c itself,
while hierarchical members are located in another cell further
down in the hierarchy (see Fig. 1). If at least one constraint
member is hierarchical, we call the constraint itself hierarchical
as well. For each constraint type, there exists a Boolean-valued
function that verifies all corresponding constraints:

verift : {c ∈ C : t(c) = t} → {TRUE, FALSE}.
Given a constraint of type t, verift returns TRUE only if the
constraint is fulfilled. The constraint propagation problem is to
guarantee visibility and verifiability of hierarchical constraints
in all cells where they might influence design decisions.

III. CONSTRAINT MANAGEMENT

During the design of an integrated circuit, all cell modifica-
tions (e.g. adding a device) should obey all relevant constraints
(e.g. some resistance limit) at any time. Aggravating this
situation, these constraints may exist in all cells that are
hierarchically connected to the current cell. Two cells are
hierarchically connected, if there exists a path between instances
of the cells in the design hierarchy graph (cf. Fig. 1). Our
approach propagates these constraints by deriving new ones in
all relevant cells. Hence, they become visible and verifiable.

Besides top-down propagation, which distributes constraints
further down in the hierarchy, Fig. 2 shows two additional types
of propagation. As an example, bottom-up propagation supports
constraints on the absolute position of cells in the layout. Cells
higher up in the hierarchy influence this position and, therefore,
these constraints have to be propagated. Finally, bottom-up top-
down propagation allows arbitrary distribution of constraints in
the hierarchy, e.g., along connectivity. Our approach implements

1: procedure TOPDOWNPROPAGATION(H , currentCell)
2: Visited ← ∅
3: Queue ← H[currentCell]
4: while Queue 6= ∅ do
5: parentalCell ← DEQUEUE(Queue)
6: if not Visited[parentalCell] then
7: Visited[parentalCell] ← TRUE
8: for all c ∈ C(parentalCell) do
9: Check whether a constraint member

10: is accessible from the currentCell.
11: if ∃m ∈M(c) : m ∈ currentCell then
12: Create new constraint in currentCell.
13: c′ ← MOVE(c, currentCell)
14: C(currentCell) ← C(currentCell) ∪ {c′}
15: end if
16: end for
17: ENQUEUE(Queue, H[parentalCell])
18: end if
19: end while
20: end procedure

Figure 3. Top-down propagation of constraints to the current cell requires
the examination of all cells higher up in the hierarchy. Every constraint with
at least one member being accessible from currentCell is propagated. MOVE
(line 13) adjusts the paths of the members and introduces new parameters.

constraint propagation in two stages: (a) top-down propagation
and (b) general propagation. Their combination supports, among
other things, all three types of constraint propagation.

A. Top-Down Propagation

For top-down propagation, we limit the search for relevant
constraints to cells that are higher up in the hierarchy. For
example, in Fig. 1 the cells corresponding to TOP and I2 are
considered during constraint propagation to I21’s cell. Our
algorithm in Fig. 3 stores all cells that might contain relevant
constraints in a queue for later examination.

A constraint is propagated, if at least one of its members
is reachable from the current cell by going further down in
the hierarchy. Newly created constraints have the form c′ =
(t′,M ′, P ′). The derived type t′ defines additional parameters
that help identify the original constraint while retaining the
original values P (c). For M ′, all members’ paths are adjusted
to start at the current cell.

B. General Propagation

Our approach to bottom-up and bottom-up top-down prop-
agation utilizes a new kind of function, that is specific for a
constraint type t:

propagatet : {c ∈ C : t(c) = t} → c′

The propagatet function takes a constraint c of type t as argu-
ment and returns a single propagated constraint c′ = (t′,M ′, P ′)
whose type t′ extends the original type t (cf. previous section).
These new constraints can be located in all cells higher up
in the hierarchy. Therefore, bottom-up propagation is directly
supported. Bottom-up top-down propagation is implemented by
performing top-down propagation, as described in the previous
section, after bottom-up propagation via propagatet. In order to
support all three propagation types, we significantly extended
the algorithm for top-down propagation presented in Fig. 3
as follows. Now, the search for relevant constraints not only
inspects cells higher up in the hierarchy, but all cells that are
reachable via hierarchical paths. For each constraint c with a
corresponding function propagatet(c), this function is called
resulting in a propagated constraint c′. Afterwards, top-down
propagation creates the actual constraints in the currently edited
cell.



Design
hierarchy

Does
transformt(c)

exist?

Constraints

transformt(c)(c)

Temporary
Constraints

Top-Down Propagation

YES

NO

Currently
edited cell

Figure 4. The new methodology for constraint propagation and transformation
into a cell can easily be integrated into the design flow.

C. Constraint Transformation

Constraint transformation enables the derivation of con-
straints from existing ones while manipulating their types,
members and parameters. As an example, if the maximum
allowed voltage drop and maximum current for a wire are
available as constraints, a constraint for the maximum allowed
resistance is deducible. We integrated constraint transformation
in the design flow by further generalizing the propagatet
function presented in the previous section. Ultimately, we
specify a transformt function for each transformable constraint
type t. This function is defined as:

transformt : {c ∈ C : t(c) = t} → {c′1, c′2, . . . }
In contrast to propagatet, multiple constraints of arbitrary type
can be returned. As an example, one IR drop constraint can be
transformed into multiple resistance constraints. Depending on
the returned constraint(s), this function can replace propagatet
and perform both, propagation and transformation. It is impor-
tant to note that while exact knowledge of the design hierarchy
is required for finding all relevant constraints, their subsequent
transformation may use arbitrary design information. One
example is the transformation of connectivity-based constraints
utilizing the netlist of the circuit.

Fig. 4 shows the final process of propagation and trans-
formation. It starts in the currently edited cell by examin-
ing the constraints of all hierarchically connected cells. If
no transformation function is associated with a constraint’s
type, only top-down propagation is carried out. Otherwise, if
transformt exists, it is executed, thereby creating one or more
new constraints. These constraints are only temporary and
thus, invisible. Transformation is repeated for all temporary
constraints until top-down propagation is the only remaining
choice. Not until then does each influenceable constraint become
visible and verifiable in the currently edited cell.

IV. EXPERIMENTAL RESULTS

A. Implementation

The methodology we developed is generic and, therefore,
independent of the specific design environment. For demon-
stration purposes, we implemented the process as an extension
to the constraint management system of Cadence Design
Framework II, using the built-in scripting language SKILL++ [6].

Power
Stages

Power
Stages

Figure 5. Layout of an industrial smart power IC featuring a large number of
power stages left and right of the dashed lines. Each power stage corresponds
to a single MOSFET in the circuit’s schematics.

Constraint transformation and propagation, as shown in Fig. 4,
is activated when a user opens a cell. The implementation is
divided into the following steps: (1) Determination of design
hierarchy. (2) Identification of all constraints in hierarchically
connected cells. (3) Transformation and propagation of all these
constraints.

B. Complexity

The run-time complexity of our approach depends on the
size of the design hierarchy as well as the number and types
of constraints. For hierarchies with n individual cells that
contain m given constraints, the search for relevant constraints is
O(n+m). The run-time of subsequent constraint transformation
and/or propagation depends on the number of constraints
of a certain type and the complexity of the corresponding
transformation functions. In addition, these functions can create
an arbitrary number of temporary constraints that might be
transformable by themselves. Because these properties are
specific to a project and the set of available constraint types,
we are unable to characterize more comprehensively their
impact on run-time. Nevertheless, it is self-evident that the
implementation of transformation functions should be optimized
for speed. For instance, caching mechanisms can be used to
avoid complex recalculations of data. Additionally, such data
should be persistent between multiple design tool invocations.

C. Demonstrator

Using our methodology, we created a custom constraint
type for the specification of maximum resistances between
package pins of smart power ICs [7]. Such integrated circuits
contain large MOSFETs (power stages) whose drain and source
terminals are connected to IC package pins, either directly or
via measure or protection circuits. These transistors switch
high powers and, therefore, occupy large areas on a chip
(cf. Fig. 5). One of the main design goals is a low ON
resistance, RON, between package pins that belong to power
stages. The specification defines an upper limit, RON,max, which
directly translates into a design constraint. The new constraint
type transforms RON,max into maximum resistance constraints
for all contributing circuit elements. For example, RDS,ON,max
constraints are assigned to all transistors with their values being
calculated from RON,max and the current resistance values of
all other elements between the two package pins.

Fig. 6 shows the outline of the transformation function. Be-
cause the transformation depends on the electrical connectivity



1: procedure TRANSFORMRON,max (c)
2: net1, net2 ← GetMembers(c)
3: limit ← GetValue(c)
4: netlist ← ExtractConnectivity(c, net1)
5: equations ← NodalAnalysis(netlist)
6: constraints ← Solve(equations, limit)
7: return constraints
8: end procedure

Figure 6. Outline of the transformt function’s implementation for the RON,max
constraint type.

bond pad

bond pad

RIC,4
200 mΩ

RDS,ON
1400 mΩ

RIC,2
150 mΩ

RIC,3
150 mΩ

RIC,1
200 mΩ

RON,max
= 2 Ω

(a)

bond pad

bond pad

RIC,4,max
325 mΩ

RDS,ON,max
1525 mΩ

Rmax
200 mΩ

RIC,1,max
325 mΩ

(b)

Figure 7. Exemplary extracted netlist with equivalent resistance values and
RON,max constraint (a). Constraint transformation and propagation automatically
generate constraints limiting the resistance of each contributing sub-circuit (b).
These limits are updated if resistance values change.

between the package pins, the first step is netlist extraction. The
resulting netlist only contains devices from the physical design
kit (PDK) and the nets in between. Next, the current resistance
values of all PDK devices are determined. For this, we use
either the resistance parameter from the device, or, in the case
of transistors, a model for RDS,ON based on geometric transistor
parameters [8]. Devices with unknown resistance are ignored
and replaced by shorts later on. In order to calculate resistance
budgets, we perform a nodal analysis. The resulting system of
equations is automatically solved by the open source computer
algebra system REDUCE [9], [10]. Its output defines upper
resistance limits for each PDK device which remain valid as
long as device resistance values don’t change. Afterwards, the
transformation function generates temporary hierarchical Rmax
and RDS,ON,max constraints for all sub-circuits being processed.
These constraints are located in the original constraint’s cell
and become visible and verifiable in the currently edited cell
after top-down propagation.

A simplified example of an extracted netlist for a power stage
is shown in Fig. 7. In this case, the power stage (represented
by RDS,ON) is connected to bond pads via interconnects
(represented by RIC). Transformation and propagation of the
RON,max constraint generate RDS,ON,max and Rmax constraints
for all relevant elements. These resistance limits are valid as
long as all other contributing elements remain constant.

We applied our methodology and the new type of constraint
to three industrial smart power designs with 24, 27 and 67 power
stages, respectively. Table I summarizes the results. In spite
of the low number of power stages and RON constraints, the
cells that influence these constraints occupy a large chip area.
Depending on the cell to be modified, only a small portion of
all temporary constraints becomes visible. Using our approach,
designers were able to perform local modifications to these
cells while simultaneously keeping an eye on the global impact
of their changes.

Table I. COMPARISON OF THREE INDUSTRIAL DESIGNS WITH RON,MAX
CONSTRAINTS.

Circuit design1 design2 design3
No. of cells 278 335 184
No. of power stages 24 27 67= No. of RON constraints
No. of cells relevant to RON 32 23 28
Chip area occupied 42 % 58 % 67 %by relevant cells
No. of temporary constraints 78 93 208

V. CONCLUSION

In this paper, we presented a new methodology for constraint
propagation and transformation. Regardless of where in the
design hierarchy a constraint was created, these fundamental
operations enable the constraint’s visibility and verifiability
in all cells where it is relevant for design decisions. The
methodology supports constraint types whose propagation and
transformation depends on hierarchy and/or on connectivity. To
the best of our knowledge, it is the first to include the ability
to step over specific design elements while traversing nets.
Beyond that, the integration of arbitrary application-specific
constraint types is possible.

We believe that our approach is an important advance in the
automation of analog and mixed-signal IC design. It provides a
basis for the automatic consideration of all constraints which is
a fundamental requirement for analog synthesis as aspired to in
the long run. The methodology allows designs to be as correct as
possible at all stages of the flow. Cell reuse becomes much more
efficient because all constraints assigned to a cell’s instances
are visible when the cell is being modified. The demonstrated
creation of a completely new, and complex, constraint type
emphasizes the practical relevance. Initial application to the
design of AMS circuits in an industrial design flow has shown
its usefulness by significantly easing constraint management,
facilitating cell reuse and reducing the number of design
iterations.

REFERENCES

[1] R. A. Rutenbar, “Design Automation for Analog: The Next Generation
of Tool Challenges,” in Proc. Int’l Conf. on CAD, ser. ICCAD, 2006,
pp. 458–460.

[2] G. Jerke, J. Lienig, and J. B. Freuer, “Constraint-Driven Design
Methodology: A Path to Analog Design Automation,” in Analog Layout
Synthesis – A Survey of Topological Approaches, H. E. Graeb, Ed. New
York: Springer, 2011, pp. 271–299.

[3] Cadence Design Systems, Inc. (2006) Speeding Design of Custom
Silicon – The Virtuoso Custom Platform. [Online]. Available:
http://www.cadence.com/rl/Resources/white papers/Virtuoso WP.pdf

[4] P. Subasic and G. B. Arsintescu, “Constraint data management for
electronic design automation,” U.S. Patent 7 003 749, Feb. 21, 2006.

[5] H. Marquardt, H. Wagieh, E. Weidner, K. Domanski, and A. Ille,
“Topology-Aware ESD Checking: A New Approach to ESD Protection,”
in 34th Electrical Overstress/Electrostatic Discharge Symposium, 2012,
pp. 1–6.

[6] T. J. Barnes, “SKILL: A CAD System Extension Language,” in Proc.
27th Design Autom. Conf., ser. DAC, 1990, pp. 266–271.

[7] B. Murari, F. Bertotti, and G. A. Vignola, Eds., Smart Power ICs:
Technologies and Applications, 2nd ed. Berlin, Heidelberg: Springer,
2002.

[8] M. L. Kniffin, R. Thoma, and J. Victory, “Physical Compact Modeling
of Layout Dependent Metal Resistance in Integrated LDMOS Power
Devices,” in Proc. 12th Int’l Symp. on Power Semiconductor Devices
and ICs, ser. ISPSD, 2000, pp. 173–176.

[9] A. C. Hearn, “REDUCE: A User-Oriented Interactive System for
Algebraic Simplification,” in Interactive Systems for Experimental
Applied Mathematics, M. Klerer and J. Reinfelds, Eds. New York:
Academic Press, 1968, pp. 79–90.

[10] ——. (2004, Feb.) REDUCE User’s Manual Version 3.8. Santa Monica,
CA, USA. [Online]. Available: http://www.reduce-algebra.com/docs/
reduce.pdf




