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Abstract 

The wiring effort and thus, the routability of electronic 
designs such as printed circuit boards, multi chip modules 
and single chip modules largely depends on the 
assignment of signals to component pins. For modern 
components that have as many as several thousand pins, 
this pin assignment cannot be optimized manually. This 
paper presents four novel pin assignment algorithms that 
automatically create optimized pin assignments for wiring 
substrate designs with components that have very high pin 
counts. We also present and evaluate quality estimation 
metrics that enable fast assessment of the pin assignment 
results. The efficiency of our algorithms allows the 
creation of optimized pin assignments using only minutes 
of computation time. We show the applicability of all four 
algorithms, including their strengths and weaknesses, in 
specific design applications. 

1. Introduction 

Pin counts and operation frequencies of electronic 
components constantly increase and so the layout 
synthesis of wiring substrates (on which these 
components are to be placed) becomes ever more 
complex. The typical basic steps of layout synthesis for 
wiring substrates, such as printed circuit boards (PCBs), 
multi-chip modules (MCMs) and single-chip modules 
(SCMs), are placement of components, interconnect 
routing and verification. 

The high I/O counts and low pitches of the 
components push the wiring capacities of the substrates to 
their limits. Also, the increasing complexity of integrated 
circuits (ICs) makes the delays of signals external to ICs a 
bottleneck for operation speeds of electronic devices. Pin 
assignment, i.e., the optimized assignment of signals to 
the pins of the components, has become a crucial step in 
the layout process in order to reduce the subsequent 
wiring effort and improve routability. Furthermore, 
electrical characteristics can be improved as well due to 
reduced wirelengths, signal intersections and a smaller 
number of routing layers.  

Figure 1 (a) shows a pin assignment task for a graphics 
processor unit (GPU) placed on an AGP (Accelerated 
Graphics Port) board. The AGP specification exactly 
defines the pin assignment of the AGP connector, which 
is at the bottom edge of the board in Figures 1 (a) and (b). 

On the other side, the GPU design allows the flexibility to 
optimize the signal allocation of its pins. Since the 
assignment of the AGP signals to the GPU pins massively 
influences the necessary wiring effort between the AGP 
connector and the GPU, this pin assignment must be 
optimized. Figure 1 (b) shows one possible pin 
assignment illustrated by the shortest connections 
between the two pins of each net (flylines). 

This paper concerns the optimization of pin 
assignments from the viewpoint of wiring substrates in an 
isolated stage, following the placement of the components. 
Specifically, the position of all components is fixed during 
the pin assignment process. Interconnect routing (wiring) 
takes place in a subsequent stage.  

There is a significant difference to the related pin 
assignment algorithms for VLSI design, which typically 
deal with millions of components each having only a few 
pins. In contrast to those algorithms, the pin assignment 
algorithms presented in this paper handle pin assignment 
tasks with components that each have several thousand 
pins. 

Producing an optimized pin assignment without 
creating the final wiring geometry represents a challenge 
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Figure 1. Illustration of a simple pin assignment for a 
graphics processor unit (GPU). (a) Pin assignment task 
for the roughly 100 signals of a GPU. (b) One possible pin 
assignment for the signals of the GPU, illustrated by the 
shortest connections (“flylines”) between the two pins of 
each net. 
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because performing detailed routing for the sole purpose 
of evaluating the pin assignment quality is not feasible. 
Instead, we have developed metrics for the quality 
estimation of a pin assignment that represent the expected 
quality of the actual detailed routing. We have verified 
our quality estimation metrics by comparing them with 
the actual routing results. 

In summary, the contributions of this paper are four 
novel pin assignment algorithms that automatically 
generate optimized pin assignments for components with 
very high pin counts. Previously these pin assignments 
had to be created manually which requires an effort of 
months. Our algorithms reduce the required effort to days. 
To the best of our knowledge, our approach allows for the 
first time an automatic pin assignment of components 
with several thousand pins each. 

2. Previous works 

Early work on pin assignment concerned topological, 
heuristic algorithms to reduce routing intersections, thus 
improving routability [1] [2] [3] [4]. This work focused 
on discrete components with small pin counts of no more 
than approximately 20 pins. 

The evolution of ICs led to new pin assignment 
challenges. One typical VLSI pin assignment task is 
channel pin assignment [5] [6]. Another problem is to 
optimize the pin assignment in standard cell and macro 
cell VLSI designs [7]. Furthermore, pin assignment is an 
important stage in FPGA designs [15]. All referenced 
approaches on pin assignment have been able to improve 
the design quality, often evaluated by wirelength and/or 
routing congestion. 

While recent work has been focusing on pin 
assignment in VLSI designs, little attention has been paid 
to pin assignment from the viewpoint of wiring substrates, 
such as PCBs and MCMs [8] [9] [10]. In contrast to VLSI 
designs, which have up to millions of cells with few pins 
each, designs of wiring substrates can contain hundreds of 
components with up to thousands of pins per component. 
In addition, pin assignment algorithms for VLSI 
commonly map pins to the outline of cells. This however, 
is impractical for area array components with very high 
pin counts placed on a wiring substrate. These significant 
differences make it impractical to adapt VLSI pin 
assignment algorithms to current designs of wiring 
substrates. 

3. Definition of the pin assignment problem 
Pins are the electric transitions of signals between 

different components of the design. They are mainly 
introduced for two reasons. First, pins serve as the well 
defined interfaces between different components, which 
allows us to cope with design complexity by applying a 
hierarchical design approach. Second, pins are the electric 
joints between components of different technologies. 

In either case, the assignment of a specific net (signal) 
is generally not constrained to a certain pin (location). In 
most cases, a signal can be assigned to any pin within a 
certain area. Depending on which pin location is chosen, 
electrical properties for the respective signal differ. In 
particular, the wiring effort both within the component as 

well as external to the component can change 
significantly. 

The general pin assignment problem is to assign all 
nets (signals) to unique, valid pin locations so that the 
overall design is optimized. In most cases, the 
optimization is judged by routability and electrical 
characteristics. 

The algorithms we present in this paper solve a 
subproblem of the general pin assignment problem which 
is highly relevant for PCB, MCM and SCM designs. 
Please note that for the sake of simplicity, we refer to 
assigning pins to fixed pin locations (rather than signals to 
fixed pins) in the remainder of this paper. As we will 
show in the following, this allows an easier explanation of 
the algorithms without modifying the pin assignment 
problem itself. Taking this into account, the pin 
assignment problem can be formulated as follows: 
Input data: 
• Two independent sets of predefined pin locations, 

defined as FROM pin location set and TO pin 
location set. Both sets contain exactly p pin locations 
each. 

• n=p two-terminal (two-pin) nets. 
Output data: 
• Assignment of the 2·n pins of the n given two-

terminal nets to the 2·p=2·n given pin locations. 
Objective: 
• Routability of the design (as defined in Section 5). 
Constraints: 
• Each net must have exactly one pin at any one FROM 

pin location and one pin at any one TO pin location. 
• There is exactly one pin at each pin location. 
• All nets (signals) are of the same priority and nets do 

not prefer or refuse a pin location. 
From the above definition it follows that the pin 

assignment problem is equivalent to finding exactly one 
TO pin location and one FROM pin location for the pins 
of any one net. During pin assignment, an objective 
function is minimized (see Section 5). 

Please note that it is irrelevant which particular net is 
assigned to a pair of pin locations because a net does not 
prefer a certain pin location. In other words, the 
subsequent assignment of the specific nets to the pairs of 
pin locations has no effect on the objective and could as 
well be created randomly. 

Figure 1 shows an example for this pin assignment 
problem. The package of the GPU defines one set of pin 
locations. The second set of pin locations is defined by 
the AGP connector. The pin assignment problem is to find 
an assignment between the pin locations of the GPU and 
the pin locations of the AGP connector that optimizes the 
routability of the AGP signals on the AGP board. 

With n being the number of two-terminal nets, the 
number of possible pin assignments is n!. Even for the 
small number of n=25 nets, this results in the vast number 
of 1.55·1025 possible pin assignments to choose from. For 
current designs n is in the magnitude of thousands, thus 
making it unlikely that the pin assignment problem can be 
solved comprehensively. 



 

4. Algorithms for pin assignment 

We have developed four pin assignment algorithms 
based upon the input data as defined in Section 3. Due to 
the complexity of the pin assignment problem, the 
algorithms of Sections 4.1, 4.2, and 4.3 are heuristic. The 
algorithm presented in Section 4.4 uses linear 
optimization with optimal solutions but limits 
optimization to properties that can be formulated as a 
linear objective function. 

4.1. Recursive bisectioning of pins 

Both pin location sets are recursively split using a 
horizontal or vertical cut line. First, the entire set is cut 
into halves. Then the half set below/left and the half set 
above/right are each split with a cut line of the other 
orientation. If an odd number of pin locations has to be 
split, the subset above/left will contain one location more 
than the subset below/right. The alternating vertical and 
horizontal cuts are repeated until each subset of pin 
locations contains only one location. Figures 2 (a) – (d) 
show this recursive bisectioning of both sets. 

The relative position between a pin location and each 
cut defines a unique binary sequence (position number) 
for each pin location. Here, the digit “0” denotes that a 
pin location is above/right a cut line, while the digit “1” 
means that a pin location is below/left. The pin 
assignment is created based on these position numbers, 
i.e., the FROM pin location and TO pin location with the 
same position number are assigned to each other. 
Figure 2 (d) shows the resulting pin assignment. 

4.2. Projection of pins onto a line 

The pin locations of both pin location sets are 
projected on a line. This line is oriented perpendicular to 
the virtual line that connects the medians of the two sets. 
Based on the order of the projected pin locations, the pin 
assignment is created. The locations of each set are 
numbered from 1 to p according to the order of their 
projected positions (Figure 3 a). The FROM pin location 
and the TO pin location with the same location number 
are assigned to each other (Figure 3 b). 

The line of projection does not need to be the same for 
both pin location sets. If a preferred direction of fan out is 
known for a bus, the line of projection can be oriented to 
be perpendicular to this preferred direction. This creates a 
pin assignment with minimum intersections within the 
wiring of the bus. Using this methodology, routing 
intersections can easily be reduced even if a bus is wired 
around a component in order to approach it from the “far 
side”. 

4.3. Removal of signal intersections 

Here, the crossings of the flylines of nets are used to 
model the signal intersections in the real layout that are to 
be minimized. First, an initial pin assignment is created. 
Any random pin assignment may be used for this. Based 
on this initial solution, crossings of two flylines are 

located. The pin assignment of the two intersecting nets is 
then swapped to remove the flyline crossing. This process 
is iterated until all flyline crossings are removed. 

Figure 4 shows an unambiguous example. However, in 
general more than one pin assignment without flyline 
crossings may exist. As shown in Section 5, the resulting 
pin assignment as well as the number of iterations depend 
on (1) the initial pin assignment and on (2) the processing 
sequence of nets. 
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Figure 2. Pin assignment by recursive bisectioning of pin 
location sets. The binary numbers denote whether a 
subset of pin locations is above/right (0) or below/left (1) 
of each cut. 
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Figure 3. Pin assignment by projection. (a) Ordering of 
pin locations by projection. (b) Pin assignment. 
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Figure 4. (a) Initial pin assignment. (b) In the upper set of 
pins, pins at locations 1 and 2 are swapped. (c) Pins 2 
and 3 are swapped. (d) Pins 6 and 7 are swapped.



 

4.4. Pin assignment as linear assignment problem 

In [11] and [12], the authors describe an approach to 
create a pin assignment by solving a linear assignment 
problem (LAP) on a cost matrix. The elements of the cost 
matrix are calculated from estimated wirelengths, logical 
design structure and signal timing.  

In our work we use an enhanced approach to create 
optimized pin assignments for very high pin counts that 
additionally is able to minimize flyline crossings. The 
used cost matrix K is of size p × p and represents the cost 
of all possible pin assignments. 
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Element kij is the cost if the FROM pin location i is 
assigned to the TO pin location j. The pin assignment is 
given by the assignment matrix X. 
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for all i and j. 
Element xij is 1 if FROM pin location i is assigned to 

TO pin location j, else xij = 0. By solving the linear 
assignment problem on the cost matrix K, the optimal pin 
assignment which minimizes the sum of all costs 
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can be found in O(p2·log p) time. An overview of suitable 
algorithms is given in [13]. We use the Hungarian 
algorithm [16] which solves the linear assignment 
problem in O(p3) time. 

In contrast to previous works using linear assignment, 
we include flyline crossings in the cost of the pin 
assignment with the following cost function: 

kij = TargetLength · α · Diffij  + lij 
Here, lij is the net length which is minimized in parallel 

with the estimated number of flyline crossings Diff (see 
below). TargetLength is the distance between the medians 
of both pin location sets. Finally, α (≥0) is the parameter 
to adjust the weight between length minimization and 
minimization of flyline crossings. 

TargetLength and lij are either calculated as half-
perimeter wirelength (HPWL) or in Euclidean geometry. 
The coordinates of the pin locations are (xi ,yi) and (xj ,yj).  
The medians of the two pin location sets are ( )FromFrom y,x  
and ( ). y,x ToTo  We define ,xxdx ji −=  

,yydy ji −=  FromTo xxdx −=  and .yydy FromTo −=  Then 
TargetLength and lij are either one of the following: 

1. Euclidean net length: 

TargetLength
22

dydx += ; 22 dydxlij +=  

2. HPWL net length: 
TargetLength dydx += ; dydxlij +=  

The estimated number of flyline crossings Diffij is 
calculated based on a target pin assignment without these 
crossings. This target pin assignment is created once. First, 
our linear assignment methodology with α = 0 is used to 
create an initial pin assignment. The initial pin assignment 
is optimal with respect to the sum of the lengths of all nets. 
Since α is set to zero, Diff is not needed to calculate the 
cost matrix K. Second, this initial pin assignment is fed to 
the algorithm of Section 4.3 to create the target pin 
assignment without flyline crossings. 

For the target pin assignment, either a circle around the 
center of a pin location set or a straight line intersecting 
all flylines are determined. All nets and consequently all 
FROM and TO pin locations are numbered from 1 
through p according to the order they are intersected by 
the line/circle. Let Fi be the number assigned to the 
FROM pin location i. Accordingly, let Tj be the number 
assigned to the TO pin location j. Using the above 
definitions, Diffij is calculated as follows: 

Diffij = |Fi – Tj| 
Since the target pin assignment is free from flyline 

crossings, Diffij and thus the cost function increases as the 
number of flyline crossings increases. To be more general, 
Diffij not only allows including flyline crossings in the 
cost function but actually includes the configuration of the 
target pin assignment as an objective of linear assignment. 

If neither a circle nor a line to intersect all flylines can 
be found for the target pin assignment, Diffij cannot be 
computed and the respective part of the objective function 
is set to 0. 

5. Experimental results 

The pin assignment algorithms presented in Section 4 
have been evaluated with numerous industrial designs 
from IBM. Due to the lack of suitable benchmarks, PCB, 
MCM and SCM designs have been used. We present the 
results for a MCM design with 2930 signals and 2112 
power/ground pins (labeled MCM1). Figure 5 shows part 
of MCM1, which carries dies that are flip chip mounted 
on top of a chip carrier. The bottom side of the chip 
carrier is covered with a regular array of pins which are 
either signal pins or power/ground pins. Within the chip 
carrier, wiring connects each chip pin (pad) to a pin on the 
bottom of the chip carrier. The pin assignment algorithms 
are used to create assignments between all signal pins of 
the dies and all signal pins on the bottom side of the chip 
carrier. The signal nets considered are two-terminal nets. 

The created pin assignments are evaluated by means of 
fast quality estimation metrics. These are net lengths in 
half-perimeter wirelength (HPWL) and in Euclidean 
geometry, and the number of flyline crossings. The 
applicability of these metrics is shown by relating them to 
the real routing results as discussed later.  

Given that (xai ,yai) and (xbi ,ybi) are the coordinates of 
the two pins of net i, p is the number of nets in the pin 



 

assignment task, dxi = |xai – xbi|, dyi = |yai – ybi|, we define 
the following metrics: 
• Sum of all HPWL net lengths (SHPWL): 

∑ +=
p

i
ii dydxSHPWL  

• Matched wirelengths (HPWL MATCH): 
HPWLMATCH = p · max (dx1 + dy1, … , dxp + dyp ) – SHPWL 
HPWL MATCH indicates the routing effort necessary to 
match the lengths of all wires of a bus. 

• Average net lengths in Euclidean geometry (AVG 
Flylines): 

AVG Flylines ∑ +=
p

i
ii dydx

p
221  

• The standard deviation of the net lengths in Euclidean 
geometry (STD Dev): 
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STD Dev (similarly to HPWL MATCH) indicates the 
routing effort necessary for matching wirelengths. 

• The number of flyline crossings of all nets. 
The pin assignment algorithms (PAA, see Table 2) of 

Section 4 are implemented in ANSI C and run on a 
2.0 GHz PC. The routing geometry is created with the 
commercial SPECCTRA autorouter on the same machine. 
The results for design MCM1 are shown in Table 1. 

We compare the results of our pin assignment 
algorithms amongst each other with a special emphasis on 
the results of the pin assignment algorithm of Section 4.4. 
This is reasonable because the algorithm of Section 4.4 
finds the optimal pin assignment with respect to a linear 
objective. That is, when optimizing SHPWL and AVG 
Flylines, the generated pin assignment is the global 
optimum with respect to either SHPWL or AVG Flylines. 
Therefore, we use those results to evaluate the other 
automatic pin assignments. Table 1 depicts the difference 
between the individual results and the global optima as a 
percent of the global optimum for SHPWL and AVG 
Flylines. The results of the pin assignment algorithm of 
Section 4.1 are the reference for the remaining quality 
metrics (HPWL MATCH and STD Dev). 

It is important to note that the manual creation of an 
optimized pin assignment for the above test designs 
requires 1–2 months, with results similar to those of the 
algorithms presented in Sections 4.1 and 4.3 [17]. The 
algorithms presented in this paper reduce this time to days. 

The experimental results prove that, except for 
algorithm 4.2, the results are close (differences ≤ 7.0 %) 
to the optimum for SHPWL and AVG Flylines. 

Considering HPWL MATCH and STD Dev, algorithm 
4.1 gives the best results. Minimum flyline crossings are 
obtained by algorithm 4.3 which always removes all 
crossings or by algorithm 4.4 which optimizes net length 
and flyline crossings in parallel. Algorithm 4.2 is not 
appropriate for design MCM1 because the nets are 
arranged radial and there does not exist a preferred 
direction for the so-called escape routing. Reasonable 

results were efficiently obtained with algorithm 4.2 for 
complex designs with a topology comparable to the one in 
Figure 1. 

The results also show that our metrics SHPWL and 
AVG Flylines are well related to the actual routing length 
and the number of vias (Figure 6). For example, the pin 
assignment with the least SHPWL results in the shortest 
actual routing length as well. The same holds for the 
correlation of the standard deviation of the lengths of the 
routed nets (STD Dev Routed), STD Dev and the standard 
deviation of the Manhattan lengths of the nets. A 
correlation between the flyline crossings and the via count 
is not observable for design MCM1 because each net is 
routed on a plane pair with pre-assigned preferred routing 
directions. 

The presented pin assignment algorithms create pin 
assignments having different qualities. None of the 
presented algorithms can be identified as superior to the 
other algorithms in all aspects. Therefore, the best choice 
of pin assignment algorithm for a certain design depends 
on the individual requirements of the respective layout. 
For designs that above all require shortest wirelengths, 
algorithm 4.4 gives best results. For the least signal 
intersections and thus minimum routing layers, 
algorithm 4.3 is preferable. The best matching of 
wirelengths is achieved by algorithm 4.1. Finally, 
algorithm 4.2 creates pin assignments that respect a 
preferred direction of signal fan-out. 
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 (c) 
Figure 5. Details of multi chip module design MCM1. 
(a) Footprint of signal pins of the chips. (b) Footprint of 
the signal pins of the chip carrier. (c) Sample pin 
assignment of the two upper chips illustrated by flylines. 



 

6. Summary 
In this paper we have presented four pin assignment 

algorithms that have proven to give good results for PCB, 
MCM and SCM pin assignment tasks. To the best of our 
knowledge, our approaches allow for the first time an 
automatic pin assignment of components with several 
thousand pins each. 

The presented algorithms are currently in use in the 
design flow for industrial designs at IBM where they have 
shown their robustness and quality, combined with an 
impressive improvement in time efficiency.  

Only a few objective metrics for pin assignment 
quality have been known so far. Therefore, in addition to 
the well established HPWL, we have introduced flyline 
crossings, matched wirelengths, the length of the flylines 
and the standard deviation of the length of flylines as 
quality estimation metrics for pin assignment. In the 
future, generally accepted benchmarks and additional, 
time-efficient objective metrics are desirable to better 
evaluate the quality of pin assignments. 
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Table 1. Experimental results for test design MCM1.

PAA 
# SHPWL HPWL 

MATCH 
AVG 

Flylines STD Dev Flyline 
Crossings 

PAA Time 
(in m:s) 

Routed 
Length Vias 

STD 
Dev 

Routed 

Routing 
Time 

(h:m:s) 
1  +4.1%     94553  +4%       6.96 18272 0:01  51495   5259        9.7 0:16:11
2 +132%  +228%  +123%  +180% 86847 0:01 +141%  +72%  +221% 2:49:06
3  +3.2%  +38%  +2.1%  +16% 0 0:17  -1.2%  -2.8%  +17% 0:11:59
4  +62%  +263%  +56%  +122% 0 0:13  +56%  +16%  +131% 0:30:31
5  +0.8%  +48%  12.38  +18% 240 4:14  -3.3%  -4.7%  +19% 0:15:38
6  47734  +63%  +7.0%  +36% 63500 2:14  -2.8%  -5.2%  +28% 0:15:40
7  +0.0%  +46%   +0.9%  +16% 0 2:52  -3.8%  -4.2%  +16% 0:12:03

Table 2. Pin assignment algorithms (PAA). 

PAA # Pin Assignment Algorithm 
1 Section 4.1 
2 Section 4.2 
3 Section 4.3 (Initial pin assignment created with 

Section 4.1) 
4 Section 4.3 (Initial pin assignment created with 

Section 4.2) 
5 Section 4.4 22 dydxlij +=  / α = 0 
6 Section 4.4 lij = dx + dy / α = 0 
7 Section 4.4 lij = dx + dy / α = 0.1 
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