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A B S T R A C T   

Many applications such as filter testing, healthcare, quality monitoring, and environmental 
measurements require precise aerosol quantification by optical aerosol spectrometers. This type 
of measurement equipment is capable of in-situ measurements and provides easy access to the 
size distribution of the particles. Due to the coincidence error, optical aerosol spectrometers are 
limited to applications with relatively low concentrations. At high concentrations, the counting 
efficiency is reduced, while the size distribution is shifted towards larger particles. In 1984 Raasch 
and Umhauer proposed an analytical correction method for the size distribution. Although the 
approach is easy to implement, it has some disadvantages. In this work, an alternative correction 
method for the size distribution is presented, which is based on neural networks. The performance 
of both correction methods is evaluated on the cumulative distribution of raw detector voltages. 
The relative error of the median, as well as an error integral over the whole distribution is used as 
a measure. The neural network-based method gives a correction result that shows approximately 
half the relative median error, and a third of the error integral compared to the method of Raasch 
and Umhauer, for high concentrations.   

1. Introduction 

Optical aerosol spectrometers are used to measure particle sizes, ranging from 70 nm up to 25 μm (VDI 3867 Blatt 4:2011–16, 
2011). The measuring principle is based on light scattering. An aerosol is passed through an illuminated measuring volume. If a particle 
is located in the measuring volume, the light is scattered in different spatial directions. For spherical particles, this effect can be 
described by the Mie theory (Mie, 1908). An optical system collects the scattered light and direct it to a photodetector, where the light 
is converted into an electrical signal. Every particle crossing the measuring volume generates a pulse on the output signal. The pulse 
amplitude contains the information about the particle size and depends on multiple variables such as geometrical properties, refractive 
index, and wavelength. All pulses can be counted and assigned into different amplitude classes. The resulting histogram can then be 
used to calculate the concentration and size distribution of the aerosol. However, the measuring principle is limited to relatively low 
number concentrations (max. 105 cm− 3 (VDI 3867 Blatt 4:2011–16, 2011)). At high concentrations, the probability of more than one 
particle in the measuring volume at a time increases, which causes overlapping particle pulses on the detector signal that cannot be 
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separated anymore (Oeser et al., 2022). As a result, the counting efficiency of the device is reduced and the measured size distribution 
is shifted towards larger particles [ (Aerosol measurement, 2011), p. 62], (ISO 21501-1. ISO 21501-1:2009, 2150), (Raasch & 
Umhauer, 1984). 

There are different techniques to minimize the coincidence error. Equation (1) can be used to calculate the counting efficiency η for 
a certain number concentration based on Poisson statistics [ (Aerosol measurement, 2011), pp. 288–89], (ISO 21501-1. ISO 
21501-1:2009, 2150), (VDI 3867 Blatt 4:2011–16, 2011). In Fig. 1 the counting efficiency function for one of the modified optical 
aerosol spectrometers used in this work is shown. Qm is the sample flow rate through the measuring volume and τ is the recovery time 
(also known as dead time) of the electronics. Commonly, the recovery time is assumed to be as long as a single particle needs to pass 
through the measuring volume. So the product Qm · τ equals the measuring volume Vm. As can be seen, a small measuring volume 
minimizes the coincidence loss, because it decreases the probability of two or more particles in the measuring volume Vm. Practically, 
the measuring volume cannot be minimized infinitely due to physical and aerodynamic constraints. Modern signal processing tech
niques enable the deconvolution of overlapping particle pulses. This can reduce the detector dead time significantly. As a result, the 
devices can be used at higher number concentrations, without increasing the coincidence error. (Oeser et al., 2022). 

In Equation (1) Cm represents the measured number concentration, which is usually known, and Ca the actual number concen
tration, which is usually the size of interest. Although the equation cannot be solved analytically, the exponential term can be 
approximated with a linear model, which allows to solve the equation for the actual number concentration. The model is precise as 
long as Ca ·Vm < 0.1. For higher number concentrations a numeric solution is recommended (Refer to Appendix 7.1 for further 
information). 

η=Cm

Ca
= e− Ca ·Qm · τ = e− Ca ·Vm ≈ 1 − Ca ·Vm Equation 1 

While the correction of the measured number concentration is relatively simple, the correction of the measured size distribution is 
an ill-posed problem. To the best of our knowledge, the only existing method for this purpose was published by Raasch and Umhauer 
back in 1984 (Raasch & Umhauer, 1984). The authors developed an analytical correction formula for the size distribution. The 
proposed method is based on Poisson statistics and assumptions that can deviate from real-world applications. In this work, we present 
an alternative approach. The correction, i. e., the transformation from measured size distribution to corrected size distribution is done 
with an artificial neural network. 

2. Materials and methods 

In this section, the proposed correction method for a size distribution, measured with coincidence losses is described. As the method 
from Raasch and Umhauer is used as a reference, and their original work was published in the German language, a brief introduction to 
their analytical solution is provided. Before the methods are presented in detail, the following conventions are made, which apply to 
the rest of this publication. 

The term concentration is always referred to particle number concentration i. e. the number of particles per volume. 
In optical aerosol spectrometers, the detector output voltage is most commonly directly proportional to the light intensity scattered 

by the particles. According to Mie theory, the relation between the signal amplitudes and the respective particle sizes is highly non- 
linear (Mie, 1908). The transfer function depends on the specific device design and is usually determined by calibration against particle 
standards (ISO 21501-1. ISO 21501-1:2009, 2150). In order to analyze the coincidence error in general, the density distribution of the 

Fig. 1. Calculated and measured counting efficiency for one of the modified optical aerosol spectrometers used in this work. Measured against SMPS 
reference, without coincidence correction. The two vertical lines indicate the concentrations where Ca ·Vm = 0.1 and Ca ·Vm = 0.3. For concen
trations smaller than Ca ·Vm = 0.1 no correction of the size distribution is required. Raasch and Umhauer suggest to use their method for number 
concentrations below Ca ·Vm = 0.3. At higher concentrations the correction result might differ significantly from the real density distribution. 
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pulse heights is used in this work, instead of the density distribution of the particle sizes. This allows general considerations, inde
pendent of the device-specific calibration function. Analogous to the conventional approach (ISO 9276–1:1998–06, 1998), the 
quantities in Table 1 are introduced (Cf. (Raasch & Umhauer, 1984)). 

2.1. Coincidence correction by Raasch and Umhauer 

In 1984 Raasch and Umhauer presented a correction method for measured size distributions which are affected by coincidence 
(Raasch & Umhauer, 1984). The approach is based on Poisson statistics. The probability that a certain number of particles is located in 
the measuring volume at a given time can be calculated by Equation (2). 

Pλ(k)=
λk

k!
· e− λ Equation 2 

The average number of particles λ in the measuring volume is determined from the aerosol concentration Ca and the size of the 
measuring volume Vm (Equation (3)). 

λ=Ca ·Vm Equation 3 

A constant aerosol velocity is assumed in the measuring volume. Thus, all particles need a constant time Δt to pass the volume. The 
probability that there are k particles in the measuring volume is therefore equal to the probability that a total of k particles enter the 
measuring volume during the time Δt. The probability that the difference of the entry times between two particles (ti+1 − ti) is greater 
than the time Δt, corresponds to the probability that no particle is in the measuring volume. Using this relationship, the probabilities 
for different coincidence scenarios can be described by the equations shown in Table 2 (Cf. (Raasch & Umhauer, 1984)). 

If two scattered light pulses with the amplitudes Ui and Uj overlap each other, the result is a pulse height Uk = Ui + Uj. Practically, 
this assumption is only valid for rectangular particle pulses. Most commercial devices use a Gaussian shaped laser beam which leads to 
Gaussian shaped particle pulses (Oeser et al., 2022). However, the particle pulses will be considered as rectangular shaped in the 
following. A measured particle pulse of a given amplitude must either be caused by a true single-particle pulse, or a combination of 
several particle pulses with different amplitudes, each smaller than the measured amplitude. The density distribution of the measured 
particle pulses can be divided into different amplitude classes of a given class width ΔU. The area under the curve corresponds to the 
relative frequency of this class (Fig. 2). For each class of the measured amplitude density distribution, this value is composed of several 
components. On the one hand from the probability of a true single-particle signal. On the other hand from the sum of all probabilities of 
all possible coincidence cases that would cause a signal with the corresponding amplitude. 

With the considerations made above, the following equation (Equation (4) (Raasch & Umhauer, 1984),) can be derived to calculate 
a measured amplitude density distribution q0(U), i. e., with coincidence, from a known actual amplitude density distribution q∗

0(U). 
The parameter α is the probability for a single particle count e− λ. Raasch and Umhauer only considered coincidence scenarios caused by 
two particles. All other combinations are assigned to this case. Coincidences caused by more than two particles are much less likely as 
can be seen in Table 2. 

q0(Uk) ·ΔU =α · q∗
0(Uk) ·ΔU +(1 − α) ·

∑
q∗

0(Ui) ·ΔU · q∗
0

(
Uj
)
·ΔU Equation 4  

When calculating the sum, the condition Ui + Uj = Uk must be met. From Equation (4) the more common integral form can be derived 
(Equation (5), (Raasch & Umhauer, 1984)). 

q0(Uk)= α · q∗
0(Uk)+ (1 − α) ·

∫ Uk

0
q∗

0

(
Uj
)
· q∗

0

(
Uk − Uj

)
· dUj Equation 5 

Equation (5) can be used to calculate a density distribution with a coincidence error q0(U), when the actual density distribution 
q∗

0(U) is known. This can be used to estimate the error caused by coincidences. In practice, one is usually interested in the actual density 
distribution, and a density distribution with coincidence errors is given. For this purpose, Equation (5) can be rearranged as shown in 

Table 1 
Quantities used in this work.  

Expression Description Unit 

N Sum of all detected particles – 
Ni Number of particles, assigned to class i – 
UiL Lowest detector output voltage of class i V 
UiH Highest detector output voltage of class i V 

Ui =
UiH − UiL

2 
Mean detector output voltage of class i V 

ΔUi = UiH − UiL Interval width of class i V 

Q0(UiH) =

∑i
j=0Nj

N 

Cumulative distribution of the pulse heights – 

q0(Ui) =
1
N
·

Ni

ΔUi  

Density distribution of the pulse heights 1/V  
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Equation (6). 

q∗
0(Uk)=

1
α · q0(Uk)+

(1 − α)
α ·

∫ Uk

0
q∗

0

(
Uj
)
· q∗

0

(
Uk − Uj

)
· dUj Equation 6 

The result is a nonlinear Volterra integral equation that has no analytical solution in general. However, the actual density dis
tribution can be approximated iteratively. Therefore q∗

0(U) is set to q0(U). In the next step, the result of Equation (6) is used as the 
actual amplitude density distribution. The procedure is repeated until a sufficient solution is available. In practice, the method con
verges after a few iterations (<10). 

According to Raasch and Umhauer, the method is very accurate for concentrations in the range of 0.1 < Ca ·Vm < 0.3. At lower 
concentrations, the correction is still possible, but not necessary, as the coincidence error has only a negligible effect on the particle size 
distribution. When the concentration is above Ca ·Vm > 0.3 the correction can still be applied, but larger deviations between the 
corrected and actual distribution are to be expected (Cf. Fig. 1). 

The method published by Raasch and Umhauer is mathematically robust and easy to implement. Nevertheless, a few drawbacks 
have to be mentioned. For example, the result of Equation (6) can be negative in some cases. Further, the assumptions of rectangular- 
shaped particle pulses and the disregard of coincidences caused by more than two particles are critical. Most commercial devices do not 
include the coincidence correction by Raasch and Umhauer. The correction has to be done afterwards by the user, which requires 
detailed knowledge of the measuring cell. Unfortunately, most instrument manufacturers do not provide information about their 
measuring volume. 

2.1.1. Coincidence correction with artificial neural networks 
As shown above, the coincidence correction is a transfer function between measured and actual size distribution. The transfer 

function is too complex to describe all correlations exactly. Practically, a good approximation is sufficient in many cases. Therefore, the 
coincidence correction can be formulated as a multidimensional regression problem. Such problems can be solved by neural networks 
(Agatonovic-Kustrin & Beresford, 2000), (Lathuiliere et al., 2020). However, to the best of our knowledge, neural networks were not 
used for coincidence correction of a measured particle size distribution before. The major difference between the analytical approach 
and the neural network is that the neural network estimates the actual size distribution, based on the experience it learned in training, 
instead of a fixed equation. Thus, knowledge about the actual transfer function is not necessary. A significant advantage of neural 
networks is that they can, in theory, represent arbitrarily complex relationships between input and output data. Neural networks are 

Table 2 
Probabilities for different coincidence cases based on Poisson statistics.  

Particle entry times Probability Description 

t2 − t1 > Δt e− λ No coincidence, single particle count 
t2 − t1 < Δt; 

t3 − t2 > Δt 
(1 − e− λ) · e− λ Single coincidence, two particles are counted as one. 

t2 − t1 < Δt; 
t3 − t2 < Δt; t4 − t3 > Δt 

(1 − e− λ)
2
· e− λ Double coincidence, three particles are counted as one. 

… (1 − e− λ)
n
· e− λ n-fold coincidence, n + 1 particles are counted as one.  

Fig. 2. Derivation of the correction method by Raasch und Umhauer. The actual density distribution is split into different amplitude classes. The 
probability (I. e. the area under the curve) for each amplitude class is the sum of the probability that a counted peak in this class was caused by a 
single particle, and the probabilities of all possible coincidence scenarios of multiple particles that would cause a peak amplitude of the respec
tive class. 
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successfully used in numerous regression and pattern recognition tasks and often deliver superior results in comparison to conven
tional methods (Agatonovic-Kustrin & Beresford, 2000), (Lathuiliere et al., 2020), (LeCun et al., 1989). 

Basically, neural networks consist of artificial neurons, which are connected by weights. Each neuron defines a relationship be
tween a set of input values xi and a corresponding output value yi. A single artificial neuron can be described by Equation (7) 
(Agatonovic-Kustrin & Beresford, 2000), (Dasaradh, 2020), (Nwankpa et al., 2018). First, the weighted sum of all input values is 
calculated. The weights wi are used to adjust the sensitivity of the neuron for the corresponding input value. The output of a neuron is 
calculated by the weighted sum using an activation function φ. In recent years, various activation functions such as sigmoid, ReLu, 
softsign, and hyperbolic tangent have been established (Nwankpa et al., 2018). 

y=φ
(∑

wi · xi

)
Equation 7 

Multiple neurons can be connected to each other. This means that the output of one neuron is used as the input of another neuron. 
In this way, arbitrary structures can be created. A convenient approach is to organize all neurons in several layers (Fig. 3). The output 
values of the previous layer are taken as input values for the following layer. Neurons of the same layer have no connection with each 
other. The number of layers, as well as the number of neurons per layer, can be chosen freely. This network topology is commonly 
referred to as a feedforward network. 

Based on the previous considerations, the transfer function of the neural network depends on the structure of the neural network, 
the activation function of the individual neurons, and the weights of the individual neurons. Initially, the weights are set to random 
values. Known datapoints can be used to estimate the performance of the neural network, i. e., whether the weights are chosen 
properly or not. This requires a dataset that contains input values as well as the desired output values. For each input value of the 
dataset, the response of the network is calculated and compared with the desired output. The more efficient the network, the smaller 
the difference between the desired, and the actual output values. The deviation is measured with an error function, e. g. mean squared 
error. During training, the weights of the network are optimized iteratively, such that the error on the training dataset is minimal. For 
this purpose, different optimization algorithms can be used [ (Goodfellow et al., 2016), pp. 271–325], (Kingma & Ba, 2014). Once the 
weights are converged, the network can predict the desired output values for new input values. After training, the neural network 
should be tested with some known datapoints, which were not used in training. This validation ensures that the network did not only 
learn the datapoints in the training dataset. In the case of overfitting, the network would give good results on the training set, but poor 
results on new data. Overfitting can be a challenge, especially when large networks are trained on small datasets. 

Therefore, a large dataset is required for coincidence correction. It should contain a variety of size distributions from different 
aerosols at different concentrations. Ideally, all possible aerosol scenarios are present in the dataset. Each datapoint must always 
consist of a measurement with a coincidence error, and a measurement without a coincidence error for the same aerosol. The mea
surement with coincidence error is used as input data for the network, while the measurement without coincidence error is used as the 
desired output value. A neural network can be trained on such a dataset and used for coincidence correction. 

In this work, the raw counts of the instrument are used for correction, since the coincidence error has a direct effect on them. 
However, the presented method can also be applied to the final measurement result in the form of e. g. a number or mass distribution. 
In this case, the correction depends on the calibration function between pulse height and particle size. If the correction should be 
applied to a particle system with different optical properties, the network must be trained again, or in the worst case, when the raw 
counts are not available, the dataset has to be recorded again. 

2.2. Measurement setup 

The training of the artificial neural network requires a dataset. In addition to a sufficient amount of datapoints, it is important that 

Fig. 3. Structure of a simple feedforward neural network. Each output node of a layer is connected to each input node of the following layer. For 
each set of input values a set of output values is calculated, based on the chosen structure of the neural network, the individual weights, and the 
activation functions of the neurons. 
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the dataset covers as many coincidence correction scenarios as possible. The dataset should contain samples of many differently shaped 
distributions at high and low concentrations. It is impossible to record a data set that completely covers all aerosol scenarios. Individual 
distributions may differ significantly in dispersity and modality. Due to the upper and lower detection limit with regard to the particle 
size, it is also possible that the measured distribution is truncated and shows only a part of the actual particle size distribution. All these 
cases should be present in an optimal dataset for coincidence correction. If the dataset should be recorded automatically, a fixed 
measurement setup is desired. In this work, we used the setup shown in Fig. 4. 

The setup shown in Fig. 4 allows variation of concentration and size distribution over a wide range. A Collison type (May 1973) 
aerosol generator (ATM 222, Topas GmbH, Germany) is used to generate a Di-Ethyl-Hexyl-Sebacat (DEHS) aerosol. The aerosol 
concentration, as well as the output flow of the generator, can be adjusted with the nozzle pressure. 

An electrostatic classifier (Model 3080, TSI Inc., USA) is placed after the generator to manipulate the size distribution. Here, the 
particles are charged by the integrated 170 MBq 85Kr neutralizer (Model 3077A, TSI Inc., USA, 170 MBq, 2010) and passed through a 
differential mobility analyzer (DMA; Model 3081, TSI Inc., USA). Inside the DMA, an electric field is generated by a high-voltage 
source. This electric field is used to separate the particles, depending on their electrical mobility. Thus, the particle size of the 
aerosol can be adjusted by the voltage. Multiple charged particles can cause the aerosol to contain additional modes of larger particles. 
The quality of the classification depends on the ratio between aerosol and sheath air flow (Chen et al., 1999). While the aerosol flow is 
defined by the generator, the sheath air flow can be set by the electrostatic classifier, to vary the width of the size distribution of the 
aerosol. 

The conditioned aerosol is diluted in a mixing chamber with clean air from a blower (RFU 564, Topas GmbH, Germany). Thus, the 
concentration can be changed without adjusting the actual distribution. This allows the measurement of an aerosol at different 
concentrations (with and without coincidences), without affecting the size distribution. The mixing chamber used in this work consists 
of a 500 mm long tube with an inner diameter of 20 mm. If the mixing chamber is selected too large, it may take a very long time for the 
desired aerosol to get to the spectrometer. A minimum flow rate of 3 l/min causes a dwell time of 3.2 s. A settling time of 30 s was 
awaited before each measurement. 

One out of three modified aerosol spectrometers (LAP 323, Topas GmbH, Germany) was used as a measuring device for each dataset 
shown in Table 4. The measuring volume of the modified devices was Vm = 0.0188 mm3 (Cf. Fig. 1). Data acquisition was performed 
using a Field Programmable Gate Array (FPGA) prototyping platform (Eclypse Z7, Digilent, USA) in combination with an Analog-to- 
digital converter (ADC) module (Zmod Scope 1410–125, Digilent, USA). In this work, peak detection was done by a simple threshold- 
based algorithm. The peaks of the detector signal were assigned into 256 logarithmic equidistant classes from 5 mV to 5 V. Differences 
in the signal path between the three devices are only caused by tolerances of the individual components e. g. lasers, optics, and 
electronics, as they would typically occur in device manufacturing. 

For each data point, a random operating point (generator nozzle pressure, DMA particle size, DMA sheath air, and blower flow) was 
selected. The parameter range for the device settings is shown in Table 3. For the chosen operating point two measurements where 
performed. One with coincidence error and one without coincidence error which is used as reference. It is not possible to completely 
eliminate the coincidence error in optical aerosol spectrometers. However, the effect of coincidences on the measured size distribution 
is negligible for concentrations below Ca ·Vm = 0.1. Thus the reference measurement requires a dilution of the aerosol. This was 
achieved by setting the controlled blower to the maximum flow rate which was 60 l/min. Note that the blower used in this work can 
provide flow rates of up to 100 l/min, but due to the pressure drops in our setup we had to select a smaller value. For the modified 
measuring cell, this coincidence limit corresponds to a concentration of 5590 cm− 3 (Cf. Fig. 1). All datapoints with a reference con
centration higher than this value must be sorted out. In this work, a significantly lower limit of 3000 cm− 3 was used. To estimate the 
influence of device-specific tolerances on our method, a total of three datasets were recorded on each of the modified aerosol spec
trometers (Device A, B, and C). Table 4 shows an overview of the datasets used in this work. 

2.3. Training 

As mentioned before, the measurement system used in this work has 256 raw-size channels. However, the resolution was reduced to 
32 size classes, as most commercial devices provide a resolution in this range (VDI 3867 Blatt 4:2011–16, 2011). 

It is not recommended to use the raw data from the aerosol spectrometer for the training of the artificial neural network. For better 

Fig. 4. Measurement setup to generate different aerosols. Concentration and size distribution of the aerosol can be varied by changing the operating 
parameters of the aerosol generator, electrostatic classifier, and the controlled blower. 
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performance, the dataset has to be preprocessed first. Therefore, it is common to transform both, input and output data, into a fixed 
range of values [ (Bishop, 1995), pp. 296–99]. In this work, the raw counts were normed by dividing each value by the maximum value 
of the vector. Unfortunately, the information about the particle concentration is lost in this normalization process. As the coincidence 
correction heavily depends on the number concentration of the aerosol, this information is feed as an additional value to the neural 
network. For the normalization of the measured concentration, a logarithmic scaling according to Equation (8) was used. Slope m and 
shift n are selected in such a way that all measured concentrations can be represented in a value range between 0 and 1. 

x0 =m · log(Cm) + n Equation 8 

After preprocessing, the dataset has to be split into training, validation, and test data [ (Ripley, 1996), p. 354]. This is important so 
that the neural network is not evaluated based on datapoints it was trained on, to prevent overfitting. Thus, the training data is used 
exclusively for training, and not for evaluation. The performance of the neural network depends on the chosen structure, which is 
defined by several hyperparameters (e. g. number of layers, number of neurons per layer, and activation function). One important step 
when training a neural network is to find a good set of hyperparameters. For this purpose, the validation data is used. When an 
adequate set of hyperparameters is found, the final model can be evaluated with the test dataset. In this work a common 80/10/10 
(training/validation/test) split of the datasets from device A and B were used (refer to Table 4). The dataset of device C is significantly 
smaller and was only used for evaluation purposes. 

In this work two neural networks, namely NN1 and NN2 were trained. As can be seen in Table 4, NN1 is trained with the data of 
device A only. In contrast, NN2 was trained with the data of device A and device B. The artificial neural networks used in this work 
were implemented in Python using Keras (Team, 2022). The application programming interface (API) contains many useful functions 
that simplify the training and modeling of the neural networks. For coincidence correction a simple feedforward neural network [ 
(Ripley, 1996), pp. 143–80] is sufficient. 

The network topology for coincidence correction used in this work is shown in Table 5. The number of layers, as well as the number 
of neurons per layer, and the activation functions were found by random grid search. For a regression task, the output layer does not 
necessarily need an activation function. However, we used the ReLu function (Nwankpa et al., 2018) to prevent negative concentration 
values. 

Table 3 
Parameter range used for aerosol generation. For each datapoint a random operating point was chosen.  

Parameter Device Minimum Maximum 

Nozzle pressure Aerosol generator 50 hPa 900 hPa 
Sheath flow Electrostatic classifier 4 l/min 20 l/min 
Particle size Electrostatic classifier 200 nm 2 μm 
Dilution flow Blower 3 l/min 30 l/min*  

* For the measurment with coincidence error 30 l/min was used as the maximum dilution flow. All reference measurements where done 
with a dilution flow of 60 l/min. 

Table 4 
Overview of the datasets used in this work. Each dataset was obtained with a different optical aerosol spectrometer of the same model. Training data 
of device A was used for training of NN1 and NN2. Training data of device B was used for training of NN2. The dataset of device C was only used for 
evaluation.  

Device Data points (total) Trained networks Data points (Cref < 3000 cm− 3) 

Total Training Validation Test 

A 1462 NN1, NN2 945 756 95 94 
B 1500 NN2 1030 824 103 103 
C 281 – 197 0 0 197  

Table 5 
Neural network structure used for coincidence correction.  

Layer Neurons Activation function 

0 33 (input) – 
1 75† Hyperbolic tangent†
2 69† Softsign†
3 72† Softsign†
4 32 (output) ReLu  

† Hyperparameter. 
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3. Results and discussion 

First, a neural network was trained on the dataset of device A (NN1). NN1 was then used to correct the distributions of the test 
dataset. For a direct comparison, the method of Raasch and Umhauer was used on the same data. The diagrams in Fig. 5 show the 
results for several datapoints of the test dataset. Each of the four diagrams shows the density distribution and cumulative distribution 
of pulse heights for different aerosols generated by the setup from Fig. 4. As can be seen, the shape, size, and concentration of the 
aerosol were varied, as intended. The grey curve shows the result of the measurement with a coincidence error. The actual distribution, 
which was measured without coincidence error, is represented by the black line. The red and blue curves correspond to the corrected 
distribution by NN1 and the method of Raasch and Umhauer. For an ideal coincidence correction, the curve of the corrected distri
bution would match the curve of the actual distribution (black). 

In the top/left diagram, the curves match each other perfectly. At low concentrations, the reference is reproduced well by both 
correction methods. As the concentration is well below the coincidence limit of the used measurement setup, no correction is needed in 
this case. At higher concentrations (two diagrams on the right) the coincidence error causes a significant difference between measured 
and actual distribution. It can be seen, that the correction by NN1 gives a good approximation of the actual distribution. The analytical 
correction of Raasch and Umhauer seems to reproduce the actual distribution slightly worse, than the neural network does. The result 
has even negative values in the density distribution of the peak heights. This causes local extrema on the cumulative distribution. 
Practically, this could be prevented by setting the values of the corresponding channels to zero. In the top/right diagram, the cu
mulative distribution has values above 1 for the analytical result. 

The individual evaluation of hundreds of test datapoints would be time-consuming and confusing. For this reason, the performance 
of the two methods is compared by two parameters. Namely, the relative shift of the median voltage U50, and the error integral be
tween the correction result, and the actual cumulative distribution of the pulse heights ERRQ0 . The median value is an important 
parameter for the description of a particle size distribution. Due to coincidences, this value is shifted towards larger particles (higher 
signal amplitudes). Therefore, the relative error of the median voltage is used as the first performance criterion. The parameter has two 
major drawbacks. If the cumulative distribution has a flat slope at the median value, a small error of the cumulative distribution might 
result in a large relative error, even if the correction result does match the actual distribution quite well. In addition, the corrected 
density distribution of the pulse heights from Raasch and Umhauer can have negative values, which might cause ambiguous median 
values. For such cases, the smallest median value was considered in the following evaluation. However, the second performance 
criterion used for the evaluation of the correction methods is the error integral of the cumulative distribution (Equation (9)). 

ERRQ0 =
1

Umax − Umin
·

∫Umax

U=Umin

⃒
⃒Q0,est(U) − Q0,ref (U)

⃒
⃒ · dU Equation 9 

The error integral is visualized in Fig. 6. For an optimal correction, the estimated cumulative distribution Q0,est(U) does match the 
actual cumulative distribution Q0,ref (U). If the curves deviate from each other, an area between the two curves is created. This area is 
inverse proportional to the similarity of the two distributions. A small error integral corresponds to a small difference. Note that a 

Fig. 5. Example datapoints of test dataset from device A. Coincidence correction with neural network and the method of Raasch and Umhauer. At 
low concentrations (top/left) all curves match each other. At higher concentrations (right side) the neural network gives the better correction result. 
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perfect correction, which deviates extremely at one point, can reach the same value as another correction, which deviates over the 
complete range, but only very slightly. 

The two performance parameters were calculated for each datapoint of the test dataset. The results for the coincidence correction 
with NN1, as well as the analytical method of Raasch and Umhauer are shown in Figs. 7 and 8. Fig. 7 shows the relative shift of the 
median voltage in dependence on the aerosol concentration, while Fig. 8 shows the error integral. The black points represent the 
measured datapoints without coincidence correction. For better visualization, all datapoints were assigned to different logarithmic 
equidistant concentration classes. The grey vertical lines represent the limits of each class. The exact values of the boundaries can be 
found in Table 6 and Table 7. For each concentration class, the mean value and standard deviation were calculated and plotted as an 
error bar. The mean values are connected with lines. Note that the test dataset of device A did not contain datapoints with concen
trations below 300 cm− 3. The third concentration class did only contain one datapoint. Thus, the shown standard deviation remains 0. 

For concentrations below the coincidence limit, the shift of the median values in Fig. 7 is small, even without any correction. The 
differences become noticeable at concentrations above 4000 cm− 3. As expected, the median value shifts towards higher voltages at 
high concentrations. Both correction methods clearly reduce this deviation. A relative median error of 20% appears to be very high at 
first glance. Considering the correlation between particle size and associated signal amplitude, this corresponds to a relative error of 
only 2.5% for Rayleigh scattering, or 9.5% for larger particles (VDI 3867 Blatt 4:2011–16, 2011). It seems that the method of Raasch 
and Umhauer, in contrast to the correction by the neural network, tends to overcorrect the distribution. This can be explained by the 
assumption of rectangular particle pulses, which is wrong for most optical aerosol spectrometers. For example, if two Gaussian shaped 
particle pulses overlap each other, the resulting amplitude is significantly lower than the sum of both amplitudes, as soon as there is a 
small time lag between the pulses. Accordingly, the coincidence error is smaller than assumed in the model of Raasch and Umhauer and 
does not have to be corrected that much in reality. However, for the test dataset, both, the mean and the standard deviation of the 
relative median error are smaller for the neural network in comparison to the analytical approach. The correction of Raasch and 
Umhauer generates some significant outliers, which are caused by the effect of ambiguous, or sensitive, median values, as described 
above. 

Fig. 8 shows the same scattering plot, but for the error integral instead of a median error. By definition, the error integral cannot be 
negative. For small concentrations, the error integral stays small. Below the coincidence limit, no coincidence correction is required. At 
higher concentrations, the error integral of the measured cumulative distribution increases significantly due to the coincidences. The 
analytical approach of Raasch and Umhauer shows only little advantage, compared to the raw measurement data without correction. 
Especially at concentrations above 20000 cm− 3 the method seems to give unstable results. The neural network on the other hand still 
keeps the error integral close to zero. Thus, the presented method is well suited for the correction of measured particle distributions 
with coincidence error. 

One major challenge of the proposed method is that the acquisition of the training dataset takes a lot of time. Even if this process is 
automated, the training of the neural network requires a certain level of expertise. The question arises whether a neural network, 
which was trained with a dataset from a specific device can be used on another device. Tolerances of the device, the measuring cell, 
optical components, and the signal processing chain might influence the data basis. Therefore, the same neural network was evaluated 
on a dataset recorded by a second device. The evaluation results for the NN1 on the dataset of device B are shown in Tables 6 and 7. The 
corresponding diagrams, similar to Figs. 7 and 8, can be found in Appendix 7.2. As can be seen, the correction by the neural network 
shows poor performance on this dataset. Especially at low concentrations, the relative median error, as well as the error integral, have 
much higher values than the correction by Raasch and Umhauer, or even the measurement data without any correction. Thus, the 
proposed correction with the neural network must not be used on a device, when the neural network was only trained on data from a 
single other device. 

To overcome this, the training data of multiple devices of the same type can be combined. So the neural network has the possibility 

Fig. 6. Error integral. The area between corrected and reference cumulative distribution is used as a performance parameter to evaluate the quality 
of the correction. 
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to see different device tolerances, which helps generalizing the coincidence correction. For this purpose, we recorded another dataset 
(device C), and trained a second neural network on the datasets from device A and device B (NN2). The corresponding diagrams of the 
results from NN2 on the dataset from device C can be found in Appendix 7.3. 

As can be seen in Tables 6 and 7, the neural network correction gives better results on data from an unknown device (device C), 
when datasets of multiple devices (device A and device B) are used. The error integral still shows a deviation, especially at low aerosol 
concentrations. But for higher concentrations, the error of the median, as well as the error integral, are much smaller than the 
correction from Raasch and Umhauer for the second neural network. Especially for high concentrations (c > 16959, Class 10), the 
relative error of the median can be minimized from − 9% for the analytical approach, down to 5% with the neural network. The error 
integral is reduced to almost a third, for the same concentration. Unfortunately, only three similar devices were available for this work. 
It can be assumed, that the coincidence correction on new devices is more precise, if datasets from more devices are used for training. 
In this way, only a single neural network has to be trained once. This neural network can then be used on devices of the same design, 
regardless of the specific device tolerances. 

The proposed method for coincidence correction works well for different distributions that are similar to those included in the 
dataset. These may differ in particle size, concentration, mode number, and distribution width. Nevertheless, all aerosols are quite 
similar, since they were all generated with the same measurement setup. Due to the electrostatic classifier, a clear major peak can be 
found in all distributions. Multiple charged particles cause more or less pronounced secondary peaks (Cf. Fig. 5). Optical aerosol 
spectrometers are often used in research, and thus are also used to measure completely different distribution types. If the distribution of 
the aerosol differs strongly from the distributions included in the dataset, the neural network may output incorrect results. Fig. 9 shows 
such a case. The distribution was also recorded with the setup from Fig. 4, but the electrostatic classifier was bypassed. Thus, the 
broadly distributed aerosol from the generator is measured directly. As a part of the particles is smaller than the detection limit of our 

Fig. 7. Relative shift of the median voltage. NN1, test dataset from device A (Table 6, Table 7). While the method of Raasch and Umhauer tends to 
overcorrect the size distribution, the neural network is able to keep the shift of the median voltage low, even at high concentrations. 

Fig. 8. Error integral of the cumulative distributions of the pulse heights. NN1, test dataset from device A (Table 6, Table 7). At high concentrations, 
the error integral between measured and reference distribution increases. Compared to the method of Raasch and Umhauer the neural network is 
able to keep the error low at high concentrations. 
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measurement setup, a part of the distribution is cut off. Thus, the neural network has to handle a completely unknown type of dis
tribution, which causes a very poor correction. 

In conclusion, the proposed correction method must only be applied to distribution types, which were included in the training 
dataset. The misbehavior of the artificial neural network in Fig. 9 is caused by an insufficiently generalized dataset. Practically, it will 
not be possible, or only with extreme effort, to record a dataset that covers all aerosol scenarios. In other neural network applications it 
is common to extend the dataset synthetically [ (Nikolenko, 2021), pp. 11–12]. This can be done in different ways. On the one hand, 
recorded data can be manipulated. For the proposed coincidence correction, this would mean adding noise to the raw counts of the 
datapoints. Further, it would be conceivable to shift the recorded distributions towards smaller or larger particles. Since the size classes 
of the aerosol spectrometer are logarithmic equidistant, and thus the relative distances of the channels to each other are equal for every 
class in the spectrum, this is easily possible. However, this technique would not change the fact that the dataset contains only the 
recorded distribution types. No significant improvement was achieved with an appropriately prepared dataset. Another way to extend 
the dataset, is to generate datapoints completely synthetically. The advantage of this approach is that the distribution shapes can be 
generated by combining e. g. different normal-, and log-normal distributions. The drawback is that the distribution with coincidence 
error has to be computed from the actual distribution for each datapoint. For this purpose, a coincidence model, such as Equation (4) or 
Equation (5) from Raasch and Umhauer has to be made. The dataset would include all assumptions, simplifications, and so the 
resulting errors. An artificial neural network trained on such a dataset would not be superior to the method of Raasch and Umhauer. 

Table 6 
Relative median error. Values in percent. Methods: Measured (No correction, M), neural network (NN), Raasch Umhauer (RU).  

N. 
Network 

Test 
Data 

Method Class 

1 2 3 4 5 6 7 8 9 10 

Cmin/cm− 3 

100 177 313 554 979 1732 3064 5420 9587 16959 

Cmax/cm− 3 

177 313 554 979 1732 3064 5420 9587 16959 30000 

NN1 A M – – 0 ± 0 5 ± 2 6 ± 5 9 ± 8 13 ± 13 15 ±
12 

37 ± 20 57 ± 12 

NN – – 1 ± 0 1 ± 2 0 ± 4 0 ± 5 0 ± 3 2 ± 9 − 1±4 7 ± 12 
RU – – 0 ± 0 2 ± 2 4 ± 4 0 ± 6 − 5±9 − 9±11 − 12 ±

10 
− 11 ±
17 

NN1 B M – 1 ± 0 0 ± 3 5 ± 5 7 ± 10 10 ±
11 

11 ± 11 15 ±
13 

33 ± 17 58 ± 14 

NN – − 58 ±
2 

− 20 ±
18 

− 20 ±
24 

− 20 ±
22 

− 9±15 − 10 ±
14 

− 8±11 − 7±13 − 6±25 

RU – 0 ± 0 0 ± 4 2 ± 5 1 ± 12 0 ± 11 − 4±9 − 7±8 − 11 ±
12 

− 9±14 

NN2 C M – – 1 ± 3 3 ± 5 5 ± 8 9 ± 12 8 ± 8 11 ± 8 26 ± 10 54 ± 16 
NN – – 9 ± 10 0 ± 5 0 ± 7 1 ± 9 0 ± 6 − 1±7 0 ± 7 5 ± 7 
RU – – − 1±4 1 ± 3 2 ± 8 2 ± 11 − 3±8 − 7±9 − 11 ±

12 
− 9±12  

Table 7 
Error integral. The shown values are multiplied by 1000 for better visualization. Methods: Measured (No correction, M), Neural network (NN), Raasch 
Umhauer (RU).  

N. Network Test Data Method Class 

1 2 3 4 5 6 7 8 9 10 

Cmin/cm− 3 

100 177 313 554 979 1732 3064 5420 9587 16959 

Cmax/cm− 3 

177 313 554 979 1732 3064 5420 9587 16959 30000 

NN1 A M – – 8 ± 0 3 ± 1 5 ± 4 5 ± 3 6 ± 4 9 ± 4 2 ± 5 42 ± 8 
NN – – 2 ± 0 2 ± 0 2 ± 1 2 ± 1 2 ± 1 2 ± 1 2 ± 1 2 ± 0 
RU – – 1 ± 0 1 ± 0 4 ± 3 4 ± 3 6 ± 3 7 ± 3 10 ± 3 30 ± 21 

NN1 B M – 1 ± 0 2 ± 2 3 ± 3 4 ± 3 5 ± 4 6 ± 4 9 ± 4 20 ± 6 38 ± 12 
NN – 18 ± 1 25 ± 15 14 ± 7 19 ± 12 18 ± 12 17 ± 12 18 ± 12 18 ± 13 22 ± 30 
RU – 1 ± 2 3 ± 2 3 ± 3 4 ± 3 4 ± 3 5 ± 2 8 ± 3 10 ± 5 25 ± 14 

NN2 C M – – 2 ± 2 2 ± 1 5 ± 5 6 ± 9 7 ± 5 9 ± 4 18 ± 6 40 ± 14 
NN – – − 9±6 8 ± 4 9 ± 4 8 ± 4 8 ± 4 8 ± 4 8 ± 3 9 ± 5 
RU – – 3 ± 1 2 ± 2 5 ± 4 5 ± 8 6 ± 3 8 ± 4 10 ± 4 27 ± 15  
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As a result, the neural network can only be used for coincidence correction if the distribution type of the aerosol is known and was 
included in the training dataset. In this case the neural network gives better correction results than the analytical approach of Raasch 
and Umhauer, which is the only known method for this purpose. So the method proposed in this work is especially interesting for 
industrial applications. In process monitoring or quality management tasks, the type of the test aerosol remains constant over several 
years. 

The correction of the measured size distribution is done independently to the correction of the measured concentration. Since the 
integral of a particle density distribution is 1.0 per definition (ISO 9276–1:1998–06, 1998), the density distribution does not contain 
information about the concentration of the aerosol. Thus, the coincidence correction method presented in this work does not improve 
the counting efficiency. The actual concentration can be calculated according to Equation (1) or the numerical solution provided in 
Appendix 7.1. However, the counting efficiency can be improved by reducing the measuring volume, or utilizing advanced peak 
detection algorithms, as shown in our recent paper (Oeser et al., 2022). 

4. Conclusion 

The use of optical aerosol spectrometers is limited by the coincidence error. At higher concentrations, the counting efficiency is 
reduced and the measured size distribution is shifted toward larger particles. While the counting efficiency is easy to correct, a neural 
network-based method for the correction of the size distribution was proposed. 

The training of the artificial neural network requires a sufficiently large and well-generalized dataset that contains datapoints from 
aerosols with different distributions. Each datapoint must consist of a distribution measured with coincidence error, and a distribution 
of the same aerosol without coincidences. A measurement setup was shown that can be used to automatically record such a dataset. 
After training, the neural network was evaluated and compared with the analytical correction method of Raasch and Umhauer, which 
is the only known method for this purpose so far. The performance of both methods was evaluated by two parameters, i. e. relative 
median error, and the error integral of the cumulative distribution of the peak amplitudes. The neural network showed better 
correction results on the test dataset, especially at high concentrations. A drawback of the proposed method is that the recording of the 
dataset is very time-consuming. Due to device tolerances a trained neural network can only be used on another device of the same type 
to a limited extent. If the neural network is used to correct a particle size distribution that differs significantly from the distributions 
contained in the training dataset, the correction result is erroneous. Nevertheless, the method remains interesting, especially for the 
monitoring of industrial applications, where the type of aerosol remains constant over years. Here, the coincidence correction by an 
artificial neural network is an alternative to the method of Raasch and Umhauer. 
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Fig. 9. Coincidence correction for an unknown distribution. If the neural network is used on a distribution type, which was not included in the 
training data, the correction becomes unstable. The analytical correction of Raasch and Umhauer still gives a good result. 
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Appendix 

7.1 Numerical calculation of the actual aerosol concentration 

The coincidence error results in a reduced counting efficiency η. The ratio between measured Cm and actual Ca concentration can be 
described by the following equation. 

η=Cm

Ca
= e− Ca ·Vm 

This equation cannot be solved for the actual concentration, but rearranged as follows. 

0= f (Ca)=Ca · e− Ca ·Vm − Cm 

The actual concentration must be a zero of this function. The function is negative for small and large Ca. It has a global maximum at 
Ca = 1/Vm, which has a value of 1

Vm · e − Cm. Accordingly, there is only a solution if Cm ·Vm < 1/e ≈ 0.368. If the measured concentration 
is above this value, the calculation of the actual concentration is not possible. The function has two zeros. The actual concentration 
must lie in the range between Cm < Ca < 1/Vm. The other zero of the function gives an invalid solution. The calculation of the valid 
zero can be done iteratively with the given python code. 

Fig. 7.1. Python function for the calculation of the actual aerosol concentration.  

First, an interval is defined, which must contain the solution. The actual concentration will always be above the measured con
centration. So the measured concentration is used as the lower limit. The upper limit is defined by the position of the maximum of the 
function. Then the function value is calculated for the center of the interval. For a negative value, the zero must be between the center 
of the interval and the upper limit. For a positive value, the zero must be between the lower limit and the center of the interval. With 
this information, the interval can be narrowed and the next iteration step can be performed. This process is repeated, until the solution 
is precise enough. If lower and upper limit are close together, i. e. the interval is smaller than the required precision, the solution 
(center of the interval) is returned by the function. 

7.2 Results NN1, test dataset from device B 

Fig. 7.2. Relative shift of the median voltage. Results for NN1 (trained on dataset from device A) on the dataset from device B..   

L. Oeser et al.                                                                                                                                                                                                           



Journal of Aerosol Science 171 (2023) 106177

14

Fig. 7.3. Error integral of the cumulative distributions of the pulse heights. Results for NN1 (trained on dataset from device A) on the dataset from 
device B.. 

7.3 Results of NN2, test dataset from device C 

Fig. 7.4. Relative shift of the median voltage. Results for NN2 (trained on dataset from device A and device B) on the dataset from device C..   

Fig. 7.5. Error integral of the cumulative distributions of the pulse heights. Results for NN2 (trained on dataset from device A and device B) on the 
dataset from device C.. 
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