
Abstract
This paper describes a novel Thermal Management Function 
(TMF) and its design process developed in the framework of 
the Clean Sky project. This TMF is capable of calculating 
optimized control signals in real-time for thermal management 
systems by using model-based system knowledge. This can be 
either a physical model of the system or a data record 
generated from this model. The TMF provides control signals 
to the air and vapor cycle which are possible sources of cooling 
power, as well as load reduction or shedding signals. To 
determine an optimal cooling split between air cycle, vapor 
cycle, and its associated ram air channels, trade factors are 
being used to make electrical power offtake and ram air usage 
(i.e. drag) comparable, since both have influence on fuel 
consumption.

An associated development process is being elaborated that 
enables a fast adaptation of the TMF to new architectures and 
systems. This will be illustrated by means of a bleedless 
thermal management architecture. Finally, results and 
expected benefits of the TMF with respect to specific fuel 
consumption are shown.

Introduction
The reduction of aircraft weight, fuel consumption, and hence 
CO2 emissions is a major goal of future aircraft designs [1]. 
Efficient and light aircraft systems can considerably contribute 
to this target which, amongst others, has led to the 
development of More Electric Aircraft (MEA) in the past [2, 3]. 
Due to the increased demand of electrical power and the 
reduced usage or even totally absence of bleed air from the 
engines, novel types of cooling technologies and hence 
thermal management systems have been considered. Thermal 
Management Architectures (TMA) encompass air cycle 

machines, ram air channels, circulation and distribution of air 
flow, vapor compression cycles, cooling loops, as well as 
alternative heat sinks like skin heat exchangers.

Together with highly integrated and complex TMAs, there is an 
increased degree of freedom in controlling the system. Optimal 
controller signals provided by a Thermal Management Function 
(TMF) are essential to improve system efficiency and to reduce 
system weight. On the one hand, a TMF can optimize control 
signals to the different sources of cooling power to reduce 
power offtake from the engines and ram air usage, which 
results in a lower drag. On the other hand, non-essential cabin 
heat loads can be shed or reduced to limit thermal peak power. 
This further leads to a reduction of system weight due to a 
smaller dimensioning of the TMA.

Previous Work
This work is based on an existing design and optimization 
framework of environmental control systems (ECS) [4]. The 
models of the system are implemented in Modelica modelling 
language [5] covering aircraft cabin, air conditioning, ram air 
channels, vapor cycles, and further cooling loops. They contain 
detailed physical behavior which can be strongly nonlinear. 
System dynamics are not modelled since mainly quasi-steady-
state results are of interest during early architecture studies [6]. 
This framework has been applied for the design, assessment, 
and optimization of environmental control systems (ECS) at 
Airbus in the past. A detailed description of the corresponding 
optimization platform can be found in [7]. It incorporates two 
nested optimization loops. In the outer loop, architecture sizing 
is being optimized. The inner loop optimizes control signals for 
the current sizing. The optimization target for both is the 
minimization of specific fuel burn (SFC) for several operating 
points constrained by system limits and proper operation 
ranges. Due to the high complexity of ECS models and several 
concurrent constraints to be met, it takes about one hour to 
compute optimal control signal values for a single operating 
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point of an aircraft mission on a current desktop computer. 
Hence, different methods need to be considered to enable 
online optimization of a TMF.

In [8, 9], a novel method and a tool for the development of 
energy management functions (EMF) have been proposed. 
They enable 

•	 optimization of overall energy efficiency, 
•	 load shedding and reduction, 
•	 consideration of system limits, like feeder thresholds, 
•	 and exploitation of system dynamics like slow responding 

loads.

So far, this EMF has been mainly developed and applied for 
the electrical energy management. The implementation of the 
respective Modelica energy management library is based on 
economic models since the links between models and theories 
used in micro-economics and typical tasks of an EMF are very 
close. Consumers (i.e. loads) pay a price for a utility depending 
on the availability of the providers (i.e. sources). The main 
difference is the type of the utilities. In micro-economics, this is 
typically any kind of product. In the case of an EMF, the utility 
is power. This basic approach has already been demonstrated 
in [10]. The application of micro-economics models for the 
energy management of hybrid electric vehicles has been 
investigated in [11] and [12].

Figure 1. Basic principle of electrical energy management proposed in 
[8]. Loads and sources incorporate predefined cost functions. Within 
the connector, the intersection point is being determined.

According to [8], each model of a load or a source incorporates 
predefined cost functions (i.e. power-over-price functions). 
These show the capability of loads to pay a certain price for a 
certain power and the capability of sources to provide power at 
a certain price. In Figure 1, two basic cost functions of a load 
and a source are shown. The cost function of a source is 
determined by its nominal power, its overload capacity, and its 
efficiency whereas the cost function of a load is determined by 
its power demand and its priority. Together with a set of general 
rules, this enables a modular and object-oriented development 
of energy management functions. Finally, the current 
intersection point and the corresponding control signals need 
to be determined. This is done within the pseudo-physical 

connector. It features a flow variable power, which is a physical 
quantity, and a potential variable price, which is not a physical 
quantity. This guarantees that in connection points the price is 
equal for each connector, whereas the sum of the single power 
values is equal to zero.

It was already stated in [8] that the method can also be used 
for thermal management since the method is generic and not 
bound to a specific physical domain. In this case, power is 
equal to cooling power. The needed functionalities are similar 
to the electrical energy management:

1.	 Reduction of heat loads when sufficient cooling power is 
not available. 

2.	 Optimization of energy efficiency (or minimization of 
specific fuel consumption) by selecting an optimal split 
between different sources of cooling power.

The core function of this paper is based on this method. It 
enables an early development of a TMF during system 
architecture design and a fast adaptation of the TMF to new 
TMAs.

Contribution of this Paper
This paper describes the development of a model-based 
thermal management function and the associated design 
process. The energy management method of [8] has been 
extended to enable the computation of optimized control 
signals with respect to SFC. The resulting TMF is real-time 
capable on a standard desktop computer.

Nevertheless, the TMF needs to know the system performance 
of the air cycle machine and the vapor compression cycle at 
the current operation point and environmental conditions. This 
system knowledge is gained from the TMA model implemented 
in the framework shown in [4]. The model is already available 
and contains detailed system knowledge under all operational 
and environmental conditions. Since this model is too complex 
to use it directly for an online TMF, a method is proposed in this 
paper that enables a semi-automatic concentration of system 
knowledge. The result is a data record containing the relevant 
operational and environmental conditions as an input and 
several outputs relevant for the assessment of system 
performance like cooling power, electrical power offtake, and 
ram air usage (i.e. drag). This can be done since system 
dynamics of the air cycle machine or vapor cycle do not need 
to be considered. Hence, this study investigates the impact of 
control signals in steady-state conditions. Nevertheless, the 
dynamic behavior of the cabin may be of interest to further 
minimize SFC. This will be part of future investigations.

By contrast, the strong nonlinearities are very relevant. They 
mainly result from the switching behavior of system controllers 
and valves, from operational and physical limitations that may 
occur during system operation, as well as from the physical 
behavior of heat-exchangers. The latter one is due to 
condensing or evaporating refrigerant flows at points where a 
single-phase flow changes to a two-phase one [4].
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The resulting TMF provides control signals to the air and vapor 
cycle which are possible sources of cooling power. Additionally, 
load reduction or shedding signals are provided in case of a 
thermal overload that can occur during normal operation. This 
could lead to a smaller dimensioning and hence less weight of 
the cooling system.

An associated development process is being elaborated that 
enables a fast adaptation of the TMF to novel architectures and 
systems. This will be illustrated by means of a bleedless TMA. 
Finally, results, expected benefits, as well as possible 
drawbacks of the TMF are shown.

Analysis of the Initial Situation

Architecture Model
The starting point for the development of the thermal 
management function is a detailed Modelica model of a 
bleedless TMA as shown in Figure 2. The extended cabin 
model on the top right contains control volumes for the different 
cabin zones, flight deck, and under floor compartment. Heat 
loads of electrical loads, passengers, radiation, as well as 
conduction are being considered. Additionally, the air 
distribution system comprises ducts, fans, and valves as well 
as the mixer unit and temperature controller. The part of the 
cabin outflow air that is not dump overboard is being 
recirculated to the air conditioning system. There are four input 
air flows shown in Figure 2. Two of them are not connected. 
The model only shows the left hand side of the environmental 
control system. The right hand side is not modelled, since it is 
assumed to behave symmetrically. The remaining two inputs 
are 

•	 the mixed fresh air and recirculation air flow and 
•	 the trim air flow coming from the air cycle machine (ACM).

The temperature demand of the first one is determined by the 
mixer unit. Trim air is needed to provide individual 
temperatures in the different cabin zones.

In the following, the degree of freedom, i.e. the remaining 
control values that can be influenced by the TMF, shall be 
analyzed using this architecture model. For the cabin, there is 
one control value left:

1.	 TMF control value: Reduction of cabin heat load in kW by 
reducing electrical cabin loads like In-Flight Entertainment.

At the bottom of Figure 2, one can see the air cycle machine, 
the associated primary ram air channel (RAC1), and the fresh 
air inlet. The ACM provides pressurized fresh air at a 
prescribed humidity and temperature. The model also includes 
local controllers that keep the ACM and RAC1 in a desired 
operating range and further provide normalized control signals 
inputs for the TMF:

2.	 TMF control value: Normalized ram air usage of RAC1 (i.e. 
0.0 to 1.0). This results in ram air opening angles in flight 
or rotational speed of an electrical driven fan on ground. 

3.	 TMF control value: Normalized pressure ratio of ACM 
(i.e. 0.0 to 1.0) which results in different electrical power 
offtakes.

Figure 2. Simplified illustration of the bleedless TMA model containing 
cabin, air cycle machine (ACM), vapor cycle (VAC), and primary and 
secondary ram air channel (RAC1/2). Controller interfaces of the TMF 
are illustrated by “C”.

Finally, there is the vapor cycle and its associated secondary 
ram air channel (RAC2). They form an additional means to cool 
down air flow in the recirculation loop. They also include 
several local controllers like the ACM and RAC1 models. The 
remaining TMF controller signals are:

4.	 TMF control value: Normalized ram air usage of RAC2 
(i.e. 0.0 to 1.0). 

5.	 TMF control value: Normalized compressor speed of the 
VAC (i.e. 0.0 to 1.0) which results in different electrical 
power offtakes.

It should be mentioned that the vapor cycle may also reject 
heat to an alternative heat sink beside the ram air channel that 
is not illustrated in Figure 2. Additionally, there are also some 
loops for the cooling of power electronics and electrical 
machines that are omitted here.
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TMF Functionalities
Having the TMA and the remaining degree of freedom 
analyzed, one can identify two main functionalities as 
illustrated in Figure 3. The first functionality deals with the 
optimization of energy efficiency (i.e. minimization of SFC) by 
selecting an optimal cooling split between air cycle and vapor 
cycle. On the one hand, the pressure ratio and ram air mass 
flow of the air cycle can be controlled to realize a dedicated 
temperature demand. On the other hand, the air flow can be 
cooled by the vapor cycle by varying the compressor speed 
and the ram air mass flow. To assess the optimal solution, so 
called Trade Factors (TF) are being used:

•	 TFelec specifies the delta SFC needed for providing a delta 
of electrical power. 

•	 TFdrag specifies the delta SFC needed for overcoming a 
delta of drag induced by ram air usage.

For this study, both factors are assumed to be constant. By 
means of these trade factors, the effect of electrical power 
offtake and ram air usage on SFC can be determined to enable 
an optimal trade off.

Figure 3. TMF functionalities.

The second functionality deals with the electrical cabin loads, 
which can be shed or reduced. This may comprise In-Flight 
Entertainment (IFE), galleys, or further commercial electrical 
loads. Reducing loads is needed if the maximum cooling 
capacity of air and vapor cycle is not sufficient to keep the 
temperature demand of air flow to the mixer unit. This situation 
only occurs in failure conditions on current aircraft (e.g. failure 
of one ACM or VAC on a hot day). However, this functionality 
can also be used to reduce the sizing and hence weight of the 
TMA, if a reduction or shedding of cabin loads is allowed in 
several situations in future aircraft.

TMF Development
A development process for the implementation of the desired 
TMF functionalities has been elaborated as illustrated in Figure 
4. This process shall enable a fast adaptation of the TMF to 
upcoming architectures changes or even totally new TMAs.

Starting point is the Modelica model of the TMA. In a first step, 
standalone models from the vapor cycle and air cycle including 
their respective heat sinks are being extracted. Since these 
models are too complex for a direct application to the online 

TMF, a simplification or concentration of system knowledge is 
needed. The result is a data record containing the relevant 
operational and environmental conditions as an input and 
several outputs relevant for the assessment of system 
performance. In the next step, the generated data record is 
verified against the standalone models to check whether all 
relevant nonlinearities have been considered with a sufficient 
level of detail. In the third step, the standalone vapor cycle and 
air cycle systems are pre-optimized locally. Since the trade 
factors are known, one can determine the optimal trade-off 
between ram air usage and electrical power offtake for all 
operational and environmental conditions of the standalone 
systems. This step reduces the number of control tuners of 
each system (ACM and VAC) from two to one. In step 4, the 
two core functionalities of the TMF are implemented based on 
the EMF tool presented in [8]. Finally, the generated TMF is 
integrated and tested at the TMA model. Each single step is 
explained in detail hereafter.

Figure 4. TMF development process.

1. Concentrate System Knowledge
This is one of the most important and most time consuming 
steps of the TMF development process. The TMF will need 
detailed information of system performance at current 
environmental and operational conditions. The needed 
information comprises the drag induced by ram air usage as 
well as the electrical power offtake (i.e. the effort) for the entire 
range of possible cooling power that can be provided by ACM 
and VAC. The approach of this paper is to extract this 
information from the TMA model. The extracted standalone 
models of the ACM and VAC system are still very complex. 
They incorporate a detailed physical behavior of the thermo-
fluid system containing closed loops which impede a fast 
initialization and reduce stability of the model. Moreover, these 
models contain a large amount of internal variables and states 
that are not needed for the TMF but will be computed at any 
time instant. Hence, it is not possible to use these models 
directly on a real-time hardware.

Instead, the relevant information shall be extracted from the 
standalone ACM and VAC models and stored in data records. 
Therefore, a Modelica library has been implemented, that 
enables an easy setup of the desired inputs and outputs as 
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well as a semi-automatic generation of these data records. 
Initially, the inputs and outputs are selected by dragging and 
dropping respective blocks and connect them with the physical 
model as shown in Figure 5 for the vapor cycle. Relevant 
inputs are the two control values for the TMF (ram air usage 
and compressor speed), environmental variables like the 
aircraft altitude, and operational values like the cabin 
recirculation air temperature. Relevant outputs are the drag 
induced by ram air usage, the electrical power offtake from the 
VAC, and the amount of cooling power provided to the air flow 
in this case.

Figure 5. Extracted physical VAC model with defined inputs and 
outputs at the top. Modelica block containing the generated data record 
at the bottom.

Having the interface defined, the user calls a function that will 
generate the data record. A graphical user interface appears 
where input ranges and the level of discretization can be 
chosen. The function will simulate the model at all 
combinations of input values and stores the respective output 
values in the data record. The total number of input variables 
and their resolution must be selected carefully, since it will 
increase the number of simulation runs and hence data points 
exponentially.

2. Verification of Data
Finally, the generated record needs to be verified against the 
physical model itself to check whether sufficient sampling 
points have been chosen to map the nonlinearities in an 
adequate level of detail. Since this distance of sampling-points 
needs to be identified by the user, this method for 
concentrating system knowledge is called semi-automatic. 
Figure 6 exemplarily shows the relative error of a generated 
data record compared to the ACM model for the cooling power 
output with respect to the ram air usage input. All other inputs 
are kept constant for the illustration. The graph shows that 

between 0.2 and 1.0 the input points are close enough 
assuming an accuracy-limit of 1%. However, between 0.0 and 
0.2, there is a strong nonlinearity resulting from the steep 
increase of cooling power close to zero ram air usage. This 
nonlinearity has not been covered by the record. The data 
record generation function allows an individual selection of 
input discretization besides equidistant values. Thus, two 
additional points have been inserted between 0.0 and 0.2 
which reduces the error below 1%.

Figure 6. Relative error of cooling power with respect to normalized 
ram air usage applying an equidistant discretization of ram air usage 
input (illustrated by the dots).

The generated and verified record can directly be used in a 
Modelica block as shown in Figure 5. The output values are 
linearly interpolated between the discretized values. By using 
this block for the vapor cycle and air cycle, detailed system 
knowledge is available in a concentrated form.

3. Local Optimization
In the next development step, the number of control tuners of 
each system (ACM and VAC) is reduced from two to one. This 
can be done since the generated records already contain all 
needed data to pre-optimize the tradeoff between ram air 
usage and electrical power offtake applying the known trade 
factors. The objective of the local optimization is to reach a 
minimal SFC for a given cooling power demand. Therefore, the 
two remaining control tuners of each standalone system 
causing a minimal SFC are determined for all operational and 
environmental conditions. This is done by a simple algorithm 
that checks each possible combination of control tuners for the 
entire operational range and interpolates in-between for a 
prescribed cooling power vector. The result is again a block 
based on another data record with identical inputs apart from 
the two control tuners and extended by the novel control tuner 
“cooling power”. The block outputs the optimal set of the 
control tuners for ram air usage and pressure ratio (ACM) or 
compressor speed (VAC).

To assess the impact of the local optimization on specific fuel 
consumption, the generated control signals shall be compared 
with a simplified distribution of control signals. Figure 7 
illustrates the control signals calculated by the local 
optimization block of the VAC compared with a fifty-fifty 
distribution for one sample operating point. Indeed, a fifty-fifty 
distribution is not a very smart control logic. Though, this 
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baseline has been chosen to see the impact of the two VAC 
control signals on SFC. For the fifty-fifty distribution, the control 
signals for compressor speed and ram air usage are identical. 
This can be done, since both signals are normalized between 
zero and one. The optimized signals at the top of Figure 7 have 
a different characteristic. An increasing cooling power demand 
from 0.0 to 0.57 causes an increased compressor speed. In 
contrast, the ram air usage stays zero. The main reason for 
this effect is the alternative heat sink of the vapor cycle. In this 
region, it is more efficient to keep the ram air doors closed and 
instead use the alternative heat sink only. At higher cooling 
power demands than 0.56, the usage of additional ram air is 
needed to obtain a minimal SFC.

Figure 7. Comparison of locally optimized control signals with fifty-fifty 
distribution for VAC at one sample operating point.

Figure 8 shows the expected benefit with respect to SFC of the 
local optimization compared to the fifty-fifty distribution at the 
operating point applied in Figure 7. At cooling power demands 
from 0 to 0.7, a considerable lower SFC has been reached. 
Above 0.7, there is only a marginal improvement.

Nevertheless, these two figures illustrate the possible benefits 
of the local optimization. Depending on the detailed physical 
system behavior, the current operational and environmental 
conditions, and the selected baseline, the resulting benefits 
may be higher or lower.

Figure 8. Comparison of expected SFC of locally optimized control 
signals with fifty-fifty distribution for VAC at the sample operating point.

Please note that the local optimization may also be realized by 
different methods. For this study, the pre-optimization and 
usage of another data record has been chosen, since all data 
was available already and there was no need to do this during 
system operation. Alternatively, the local optimization may be 
realized by a simple online optimization or search algorithm 
since there are only two control values to vary at a given point 
of operation. This needs to be performed in real time, 
especially if trade factors will change during system operation.

4. Development of Core Function
At this stage, there are three out of five control tuners left that 
need to be determined by the thermal management function:

1.	 Cooling power provided by the ACM. 
2.	 Cooling power provided by the VAC. 
3.	 Amount of cabin heat load reduction.

The first two tuners deal with functionality 1 whereas the last 
tuner needs to be controlled for functionality 2 as shown in 
Figure 3. Both functionalities are realized by the thermal 
management core function based on the EMF tool presented in 
[8]. As already mentioned, there is an analogy between 
electrical energy management tasks and thermal management. 
In both cases, an optimal split between different sources of a 
kind of power needs to be found and loads consuming this 
power needs to be reduced regarding their priority in case of 
an overload. For the presented TMA, the thermal management 
function shall select the optimal distribution of cooling power 
provided by the ACM and VAC on the one hand. On the other 
hand, it shall provide a reduction signal to the controllable 
cabin heat loads. This leads to the basic implementation as 
shown in Figure 9. One can see the direct correlation between 
the needed functionalities and the basic implementation by the 
EMF tool. The cabin load can be subdivided into a non-
controllable part (Cabin) and a controllable thermal load. If 
needed, the controllable load may be further subdivided into 
the single cabin systems, like IFE, galley oven, or seat power 
supply. For this study, only one controllable load shall be 
considered, since the TMF will interface with the electrical load 
management by a single load reduction signal.
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Figure 9. Correlation between TMF functionalities and basic 
implementation by using the EMF tool.

For the detailed implementation by the EMF tool, cost functions 
are needed for the two cooling power sources. In [8], the price 
for a certain power is being determined by the inverse of the 
generator efficiency. Since the price is a potential variable, this 
method will determine an operation point at which the 
efficiency of both sources is equal. In some cases, this might 
be the optimal solution as in [8]. In a general case, a different 
approach is needed to get the global optimum.

The TMF shall both minimize SFC and ensure the demanded 
cooling power. Hence, SFC is a primary power effort1 whereas 
cooling power is the useful part. This enables a definition of an 
efficiency

(1)

The constant “Factor” is needed to normalize the efficiency 
between zero and one. Using this definition, one can compare 
the system performance of ACM and VAC at different 
operational and environmental conditions. Figure 10 
illustrates the efficiencies with respect to the provided cooling 
power for a sample operating point. The efficiency of the VAC 
is high for low cooling powers and decreases at higher 
cooling power demands. In contrast, the ACM has a 
maximum efficiency in the middle of its cooling performance. 
This causes a non-monotonic and multi-valued cost function 
for the ACM. In [8], a method has been shown that can deal 
with such cost functions by renegotiation. The solution is 
determined in a fixed number of negotiation rounds applying 
monotonic hull curves that are modified in each round [8]. 
However, if the price is calculated by the inverse of efficiency, 
this method fails to get the optimal overall solution at a high 
percentage of the cooling power range. Therefore, a novel 
calculation of the price has been elaborated. In addition to the 
inverse of the efficiency, the derivative of the effort with 
respect to the useful power is used to determine the cost 
function for several negotiation rounds. Applying these new 
cost functions, it is not guaranteed that the last negotiation 

1.  Only called “effort” in the following

round offers the best results. This is likely for cases with local 
optima. Otherwise, one of the first rounds might be optimal. 
Thus, the best negotiation round needs to be determined 
which leads to an extension of the pseudo-physical 
connector. Besides the potential variable price and the flow 
variable power, the potential variable “efficiency” and the flow 
variable “effort” have been added. The variable effort is 
calculated by each source and summed up in connection 
points. At these points or within the loads, the overall 
efficiency can be calculated using the sum of power and 
effort. Finally, the efficiencies can be compared to select the 
best round and to determine the corresponding control tuner.

Figure 10. Relative SFC with respect to cooling power for a sample 
operating point.

The required input for this optimization of cooling split is a 
two-column matrix containing pairs of cooling power and 
effort2. This information is already available from the system 
knowledge block and the local optimization block. The effort 
equals the SFC multiplied by a Factor as done in Equation (1) 
to guaranty a maximum efficiency of one. The derivative of the 
effort as well as the efficiency can be directly calculated out of 
this data.

Figure 11 shows the final implementation of the TMF. It 
contains economic models for the two cooling power sources 
ACM and VAC implemented with the novel cost functions and 
the extended pseudo-physical connector. The required matrix 
containing the pairs of power and SFC is provided by the 
blocks on the left. They, in turn, are connected with the 
environmental and operational inputs needed to determine this 
information. The output of the ACM and VAC models is a 
normalized cooling power that is being translated into ram air 
usage and pressure ratio or compressor speed by the local 
optimization blocks. The Cabin model comprises both, the 
controllable and non-controllable loads other than shown in 
Figure 9. This is because the TMF has currently no information 
about the amount of heat load that can be reduced. It simply 
outputs the required load reduction to keep the desired cabin 
temperature. The electrical load management will use this 
signal to reduce the respective electrical cabin loads.

2.  Effort may be replaced by efficiency since both can be calculated from each 
other.
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Figure 11. Implementation of entire thermal management function in 
Modelica. LO-ACM=Local Optimization Block of ACM. LO-VAC=Local 
Optimization Block of VAC.

5. Integration and Test
The developed thermal management function is integrated into 
the TMA model illustrated in Figure 2. The corresponding 
virtual test bed is shown in Figure 11. It contains the TMF and 
the TMA. In addition, a PI controller determines the cooling 
demand to keep a prescribed cabin temperature. Using this 
setup, the TMF shall be tested and benefits with respect to 
SFC shall be assessed. The computational time of the 
implemented TMF amounts to about 1.5 seconds for an entire 
mission of about 2 hours of simulation time on a standard 
desktop computer. Please note that this is the computational 
time needed for the standalone TMF without the TMA model, 
since this is not real time capable.

Figure 11. TMF integrated into thermal management architecture.

For the assessment of benefits, an entire aircraft mission from 
take-off to landing is considered at a standard day. A fifty-fifty 
distribution between normalized cooling power provided by 
ACM and VAC has been chosen as a baseline since it will load 
the VAC and ACM to the same amount with respect to their 
nominal cooling power. Figure 12 illustrates the corresponding 
control signals of the optimized cooling split determined by the 
TMF compared to the control signals of the selected baseline. 
The resulting SFC is shown in Figure 13. The TMF causes a 
lower SFC than the baseline for each point of the mission.

Especially for the cruise phase, a considerably improvement 
has been reached by the TMF. The optimized control signals in 
Figure 12 underline the basic behavior of the ACM to be more 

efficient for larger amounts of cooling power, whereas the VAC 
has an optimal performance at lower cooling power demands 
as shown in Figure 10 for a sample operating point3.

The selected baseline already deploys the local optimization of 
ram air usage and compressor speed or pressure ratio. Hence, 
Figure 13 shows the benefit of selecting the optimal cooling 
split between VAC and ACM, only. Due to the fact, that the 
local optimization may be performed by the systems itself (i.e. 
VAC, ACM) the selected baseline seems to be more suitable.

Figure 12. Control signals of TMF cooling split for a standard aircraft 
mission compared to a fifty-fifty distribution between ACM and VAC.

Figure 13. Specific fuel consumption of the entire TMA for a standard 
aircraft mission applying TMF control signals and the fifty-fifty 
distribution as a baseline.

For this standard mission, no load reduction was needed. 
Nevertheless, a load reduction signal will be computed in case 
of an overload. If the cooling demand is greater than the 
possible cooling power provided by ACM and VAC, a signal is 
output providing the amount of heat load reduction in Watt. 
This case is shown in Figure 14.

Besides the illustrated benefits of the TMF, there are also some 
drawbacks. A main drawback is the increased effort needed to 
develop a function based on system knowledge. The proposed 
development process decreases this effort. Nevertheless, 
detailed system knowledge is needed by means of a model. If 
not available, this approach would cause an immense 
modelling effort. In this case, the model was available already.

3.  This finding is depending on system sizing and operational and environmental 
conditions.

Schlabe, D. and Lienig, J., "Model-Based Thermal Management Functions for Aircraft Systems," 
SAE 2014 Aerospace Systems and Technology Conference (ASTC), Cincinnati, USA, September 2014, doi:10.4271/2014-01-2203



Figure 14. Illustration of load reduction signal.

Conclusion
The presented results show that intelligent algorithms to control 
a TMA can significantly reduce SFC in case a dedicated 
degree of freedom is left, keeping in mind that the ECS is the 
largest consumer of non-propulsive power offtake. This 
reduction results from optimal control signals rather than 
changing the architecture or system weight. The developed 
TMF is capable of calculating optimized control signals in 
real-time by using model-based system knowledge. In order to 
do this, a data record is utilized that can be semi-automatically 
generated from the physical model of the system. Finally, an 
associated development process is described that enables a 
fast adaptation of the TMF to new architectures and systems 
provided that a model of the system is available.

Since a TMF can be developed along with the TMA, our 
approach enables an integrated design of both. Thus, system 
size, weight and SFC can be minimized. Currently, the impact 
of the load reduction functionality on system weight has not 
been investigated. This will be part of future research.

The presented method assumes that the TMA will behave as 
modelled. Otherwise, the control signals would not be optimal. 
Hence, as soon as the system hardware is available, a 
validation of the model and the respective record is needed.

As already mentioned, the concentration of system knowledge 
is a key element of the proposed method. An alternative to the 
data records could be a simplified physical model. This may be 
the better option if too many inputs are needed and strong 
nonlinearities would force a high resolution of these inputs 
since the amount of data points rises exponential with the 
amount of input signals. Onboard an aircraft, the systems 
themselves could deliver this information as another option.

For this study the trade factors are considered to be constant 
all over the mission for a fixed aircraft configuration. In reality, 
trade factors may change depending on the current aircraft 
mission phase and operational conditions. For instance, 
additional drag during climb or cruise phase will result in much 
higher fuel burn than drag induced during landing or a step 
descent, where drag is needed to reduce aircraft speed.

Therefore, trade factor functions or curves can be obtained 
from an aerodynamic and engine model of the aircraft as 
available in the DLR Flight Dynamics Library [13].

Finally, the cabin dynamic may be exploited to further reduce 
SFC in the future. This can be realized if the cabin temperature 
may be varied within a prescribed band of e.g. ± 2 K. Using 
predictive information like a mission plan, one can pre-cool the 
cabin at mission phases where cooling causes less fuel burn.
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ACM - Air Cycle Machine

ECS - Environmental Control System

EMF - Energy Management Function

MEA - More Electric Aircraft

RAC - Ram Air Channel

SFC - Specific Fuel Consumption

TF - Trade Factor

TMA - Thermal Management Architecture

TMF - Thermal Management Function

VAC - Vapor Cycle
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