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Abstract—Predicting the properties of flexible printed circuits
(FPCs) before production is a significant challenge in their
development. Traditional design flows model FPCs in a flat
state, yet simulations of the actual bent shape of the circuits
are required in forecasting their final, real-world behavior. Cur-
rently, only proprietary tools are available for simulating these
3-D geometries, with no open-source alternatives. This article
introduces a novel open-source software tool that bridges this
gap by transforming 2-D layout data from KiCad files into 3-D
bent meshes ready for simulation. Initially, retrieved geometries
are rendered according to a predefined stackup. To enable a
seamless simulation workflow, the geometries must then undergo
preprocessing, meshing, and labeling. This article significantly
extends an earlier published algorithm by: 1) supporting more
bend shapes and 2) eliminating dependencies on external pro-
grams for geometry generation, omitting the necessity to do
the meshing manually, and generating physical groups. These
steps are now integrated in our tool, facilitating automatic mesh
generation from layout files in a single step. Consequently, the
software generates ready-to-use finite element method (FEM)
meshes for external simulators, thus supporting a comprehensive
open-source design and verification workflow. This work not only
enhances the accessibility of FPC design and simulation but also
underscores the broader applicability of open-source solutions
for printed circuit board (PCB) design.

Index Terms—TFinite element method (FEM), flexible circuit,
flexible printed circuit (FPC), open source, simulation.

I. INTRODUCTION
A. Motivation

LEXIBLE printed circuits (FPCs) provide significant
advantages over traditional rigid printed circuit boards
(PCBs). Particularly beneficial in projects with complex
geometries or limited space, FPCs use a bendable substrate
[often polyimide (PI)], in contrast to the fiberglass-reinforced
epoxy (FR4) [2] used in rigid PCBs. The inherent flexibility
of FPCs enables circuits that can adapt to curved surfaces
or be folded to reduce their spatial footprint. In addition, the
material properties of PI are advantageous in high-frequency
(HF) applications [3].
Despite these benefits, designing FPCs poses substantial
challenges. Conventional layout designs are executed in 2-D,
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Fig. 1. Individual steps in our workflow. (a) Layout design, (b) geometry
generation, (c) meshing, (d) bending, and (e) simulation of an FPC.

yet the final form of these circuits is inherently 3-D. This
introduces challenges in visualizing and planning the final
product. Effective design processes must preemptively address
potential issues such as component interference and undesir-
able electrical or thermal interactions, e.g., crosstalk or indirect
heating via external parts. Furthermore, precise component
placement during the design phase enables seamless assembly
and optimal functionality in the final 3-D structure (Fig. 1).

B. State of the Art

To date, 3-D-simulation software is only available under
proprietary licenses from companies like Altium and Cadence.
For smaller companies and projects, the licensing cost is often
too high. Moreover, users are constrained to the functionality
the software offers and lack possibilities to enhance capabili-
ties, raising demand for a free or open-source alternative.

Open-source tools benefit from the fact that their code is
open for access and modification by any individual. This
enables teams to adapt the workflows involved to their specific
requirements and create interfaces to specialized tools. Those
factors lead to an increased flexibility and versatility of a
program.

In addition, the software’s user community can contribute to
its testing, further development, and refinement. It facilitates
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the extension of the tool’s scope to other aspects of simulation
and modeling and enables a wider range of tests. In addition,
the transparency of open-source software allows for increased
security because it can be examined by the community. With
many eyes reviewing the code, bugs and security vulnerabil-
ities can be identified and addressed quickly. Consequently,
this leads to more robust, accurate, and secure software.

While the existing open-source PCB design tools like KiCad
[4] are widely used to design rigid PCBs, they lack built-
in capabilities for the design, modeling, and simulation of
FPCs. Therefore, several plugins have been developed, e.g.,
to implement finite element method (FEM) simulation in
KiCad in the past years. One example is the Kicad-nikfemm
[5] plugin, which was developed to simulate and plot power
densities and voltages on PCB geometries. It was introduced in
2024 and is based on the author’s own FEM implementation
nikfemm [6] published a year earlier. However, nikfemm is
constrained to 2-D geometries, and the corresponding plugin
assumes the stackup to comprise two copper layers of 35 ym.

Kicad pdn [7] is a similar piece of software. As with the
previous example, it possesses good visualization capabilities,
but also lacks support for specifying the thickness of copper
layers.

While aforementioned projects are smaller plugins for sim-
ulating current density in power delivery networks (PDNs),
the KiCad-sparselizard branch [8] appears to have a more
ambitious objective. In addition to current density and voltage
drop simulations, it facilitates capacitance simulations on a
native KiCad interface. This integration ensures a seamless
workflow within the main software.

Despite the enhanced support for FEM simulations facil-
itated by aforementioned software, KiCad continues to lack
tools for defining bending shapes or visualizing and simulating
FPCs in their final, 3-D form. This is where our contribution
comes in.

C. Our Contribution

In a previous paper [1], we presented the workflow depicted
in Fig. 2 that uses exclusively open-source software to visual-
ize and simulate flexible circuits. We developed the application
Fold the Line (FTL) based on this workflow, allowing users to
bend circuits designed in the open-source program KiCad by
applying specific bending parameters, filling the gap between
FPC design and simulation. Still, the application discussed
there had several major limitations.

1) It supported only .kicad pcb input files, creating a

dependency on KiCad.

2) Itrelied on external tools — FreeCAD [9] and fcad pcb

[10] — to generate 3-D geometries.

3) Meshing was performed in Salome Meca [11], requiring

extensive manual intervention.

4) Bending was restricted to directions parallel to the x- or

y-axis.

To enhance the efficiency and memory utilization of our
application, as well as to increase its functional adaptability, it
was necessary to eliminate unnecessary external dependencies
and to address and improve the following aspects:
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Fig. 2. Workflow for the simulation of FPCs. Our tool for transforming
geometries (FTL) is highlighted.

1) Support for alternative input data formats like Gerber
files and DXF, enabling the use of most PCB layout
tools.

2) Integrated meshing functionality supporting automatic
meshing with minimal manual effort.

3) Capabilities for automatic model structuring and labeling
to assign material parameters and constraints for simu-
lation,

4) Support for bending the FPC along any line.

These extensions are presented in this article. The updated
workflow, still named FTL, diverges from the previous one in
that it no longer relies on FreeCAD and Salome and instead
uses gmsh [12] for the generation, annotation, and meshing of
the 3-D geometries. In addition, we added new transformation
schemes to support bending along any line and, thus, enabling
more design flexibility. To illustrate the capabilities of this
workflow, we use an example circuit described in Section III
to demonstrate the transformation into its bent configuration
and the thermal simulation of the generated geometry.

The source code of our new and extended program FTL
is licensed as open-source software and available on GitHub
[13] for anyone to use and modify.

II. METHOD

In this section, we first describe our workflow for designing
an FPC as shown in Fig. 3 (Section II-A), and then explain the
detailed implementation of our new tool FTL (Section II-B).

A. Workflow

Our workflow begins with the design of the circuit as a flat
PCB in either KiCad or any program that can export DXF or
GDSII files. This ensures the generation of a valid 2-D input
geometry that can be modeled for subsequent simulations.

1) PCB Design With KiCad: The most straightforward
approach to designing the FPC uses the software KiCad.
This software offers a variety of features, such as design
rule check (DRC), electrical rule check (ERC), layout versus
schematic check (LVS), and SPICE simulation, facilitating a
correct design through powerful checks to mitigate potential
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Fig. 3. Workflow for processing geometries in FTL and their applicability
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Fig. 4. Example configuration of a bend in KiCad with the bending area
highlighted in white.

issues from the beginning of the design process. Following the
schematic design, layout is designed. In this step, the involved
electronic components are arranged and wired. Care must be
taken to ensure correct placement to avoid collision of the
components in the bent state and to treat the bending area as
keep-out zones.

We have developed a KiCad plugin to enable users to spec-
ify the bending areas and adjust their parameters, as pictured
in Fig. 4. This is achieved by drawing rectangles and polygons
on a dedicated layer. The scope of these geometries is always
defined by their geometric boundaries; only areas of the PCB

confined within the shape will be transformed. By selecting
a shape and clicking on the plugin icon, parameters can be
adjusted. These include the maximum bending angle at the end
of the transformation and the direction (positive/negative x-/y-
axis). Depending on the latter parameter, the first edge of the
rectangle found in the corresponding direction will be defined
as the start line for the bending, while the latter will be the
end line corresponding to the maximum bending angle. The
transformation data is then exported to a JSON file, making it
accessible for our tool FTL.

As explained in our previous paper [1], KiCad layout files
(.kicad pcb) were used to generate the 3-D substrate and
copper trace geometries as STL files using the fcad pcb [10]
macro in FreeCAD [9]. This macro extruded the 2-D polygons
representing the copper routes into a 3-D stack of copper wires
and substrate layers.

This outdated approach had the disadvantage of requir-
ing the macro and FreeCAD software, which added heavy
computational overhead. An additional disadvantage was that
geometric groups could not be defined on the mesh in this way
and the creation of the mesh took longer. Geometric groups
are required to assign material properties and constraints for
simulation.

To address these limitations, we created a custom geometry
engine, allowing users to use python to generate geometries,
extrude them, and perform Boolean operations. This resulted
in a significantly reduced memory footprint, faster generation
times, and an efficient method for automatically creating
geometry groups to identify parts and pads during simulations.
We go into the details of this implementation in Section II-B.1.

2) DXF File Import: Alternatively, a DXF file can be used
to generate the model. This import uses a custom built-in
DXF reader module that enables the generation of gmsh [12]
geometries from the individual layers of the DXF file. These
geometries are inherently 2-D as defined in the file, requiring
extrusion and stacking of layers to form a 3-D model of the
FPC. This can be done by defining the stackup in a YAML
file, where each layer must be defined with its corresponding
layer in the DXF file, its thickness, and material.

The primary benefit of DXF files is that they can be exported
by a wide range of programs. This contributes to the format’s
widespread support and ease of use. This even enables users
to draw circuit structures using a mechanical CAD program.

However, those programs do not offer the advanced func-
tionality that KiCad offers. Conformity checks must be
performed manually, and electric simulations on SPICE level
are not available. Nevertheless, the DXF format can serve as
a practical interface to other electrical CAD programs that are
only capable of exporting other formats not supported by FTL.
Often, these ECAD programs also offer utilities for analysis
and checks, making FTL independent of KiCad.

3) GDSII File Import: GDSII files are the most widely used
data format for layout files of integrated circuits and can be
accessed and edited with the open-source tool KLayout [14].
Internally, they are structured similar to DXF files: A GDSII
file contains a collection of named layers that each contain
a variety of geometric entities. Contrary to the DXF format,
in the GDSII format those layers’ names are numeric codes
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Fig. 5. Bending area (green), affected FPC area (blue), start line (red), and
residual area (orange) as visualized in the application. (For interpretation of
the references to color in this figure, the reader is referred to the web version
of this article.)

instead of strings. Rendering, however, is the same as in DXF
files. Support for GDSII files is a crucial requirement for a
later step in the project: the simulation of IC structures on an
FPC. This will allow more precise simulations of application
specific integrated circuits (ASICs) in their designated envi-
ronment. Moreover, vice versa, it allows for a more precise
prediction of the impact of heat generation within the ASIC
on the FPC.

Our open-source program FTL is able to create, mesh, and
bend the 3-D circuit geometry created during the steps in
Sections II-A.1-1I-A.3. Subsequent to the geometry creation
process that is explained in more detail later in Section II-B.1,
the gmsh interface is used to create a mesh from the geometries
that can be used as a data source for the transformation
algorithm. The term transformation refers to the process of
bending (transforming) the flat PCB into its bent shape and
thus the displacement of the nodes according to the bending
properties defined by the designer.

Prior to the transformation, the area to be bent is high-
lighted, as illustrated in Fig. 5. The individual areas of the PCB
are highlighted in distinct colors here: transformations appear
as green shapes, with the affected portion of the FPC shown in
blue. A red line indicates the start line, marking the position at
which the transformation begins to bend the FPC from its flat
(horizontal) form. As the transformation progresses toward the
opposite end of the shape, the bending angle increases, result-
ing in the end being bent at the maximum angle specified in the
parameters of the corresponding transformation. The residual,
as described later in Section II-B, denotes the portion of the
FPC that is located beyond the end of the transformation. This
is indicated by the orange coloring in Fig. 5. Nevertheless, it
is necessary that this part is rotated and moved in a way that
ensures it is tangential to the end of the transformed mesh.
Said part extends to the edge of the FPC, or the beginning of
a subsequent transformation. After confirmation, the algorithm
is executed, and the bent circuit board is visualized and can
be exported.

The mesh generated by our program FTL can be used
for simulations. For this, the bent geometries can be further
processed for advanced mesh operations and, for example,
imported into Elmer [15] or Palace [16] to enable FEM
simulations of the transformed circuit. Alternatively, straight
geometries can be used in OpenEMS [17] to execute finite
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Fig. 6. Process-specific flow for rendering FPC geometries, in which
3-D geometry generation and preprocessing are conducted according to the
respective PCB technology. The further steps toward simulation (cf. Fig. 3)
are not shown.

difference time domain (FDTD) simulations, as the FDTD
method is not suited for bent geometries.

B. Implementation

Our program FTL has been developed in Python. This
decision ensures a seamless usability across all the platforms
to make it accessible for a wide user base. In addition, it
offers access to a vast ecosystem of libraries, streamlining the
development workflow and offering good interfaces to other
programs, algorithms, and file formats. This facilitates the
implementation of complex features with minimal effort. By
leveraging these capabilities, the application can be deployed
on various operating systems and integrated seamlessly with
other applications without the need for significant modifica-
tions.

1) 3-D Geometry Generation: As shown in Fig. 3,
the program starts by importing the information from the
project-specific configuration file. This includes a variety of
parameters and the location of the source file containing the
geometry. For a KiCad PCB file, the stackup information is
read from the corresponding location in the file, including the
material, thickness, and order of the layers. Conversely, when
dealing with a DXF file, it is necessary to define the stackup
parameters within the configuration file itself.

Once the information about the stackup is available, the
geometries are rendered. For DXF files, the layers are system-
atically traversed from bottom to top (according to the data in
the stackup). For each layer, the geometries are extracted and
rendered in gmsh. In contrast, the rendering of KiCad files is
more intricate, as parts are rendered as “containers” holding
geometries from multiple layers that correspond to the stackup
layers. These parts must be rendered with an offset relative
to the part’s position. The position of each part is specified
in the respective entry, facilitating the calculation of the
necessary coordinate offset. Geometries are then aggregated
to be rendered in the associated main stackup layers.

An important point to note is that our workflow uses
what we call fechnology classes to render a process-specific
model as illustrated in Fig. 6. These files contain information
about the thicknesses and materials involved in the man-
ufacturing process and additional parameters that must be
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Fig. 7. Shared geometries in fragmented components.

considered during the generation of models for the given
process. If a technology is provided, manual specification of
the corresponding parameters in the configuration file becomes
redundant. However, if these parameters are specified, the
values configured in the technology file will be overridden.

Examples for additional parameters that can be specified are
as follows.

1) Via filling: this is applicable for FPCs that are printed
with conductive ink, leading to filled vias. For etched
FPCs, vias will be hollow.

2) Metallization thickness: this is due to the fact that
different technologies may be used, each using different
methods and times for via metallization, resulting in
different metal thicknesses for different technologies.

The primary benefit of this procedure is that it offers a more

compact and comprehensive approach, because it

1) eliminates the need to define parameters for each indi-
vidual model,

2) improves the management of technological parameters
by ensuring they are consistent across all the projects,
and

3) enables rendering a model for multiple technologies
from a single input geometry, enabling effective com-
parison and analysis.

This proves to be advantageous in scenarios where simu-
lations must be prepared for multiple technologies using the
same input files.

2) Preprocessing: After geometry generation, careful
preparation for the meshing process is crucial. To ensure
the model’s integrity and to prevent issues during the sim-
ulation process, cautious attention must be directed toward
the interfaces between the individual components. A rig-
orous verification process is essential to ensure the nodes
are consistent at the interface between all the geometries,
thereby ensuring the creation of a both conforming and also
uninterrupted mesh. This objective can be achieved using the
Boolean fragments function of the gmsh Python interface. This
operation replaces the tangential surfaces present in both the
components with a single new surface belonging to each of
the adjacent components, as shown in Fig. 7. Later, upon the
subsequent mesh generation, this ensures that the boundary
surfaces will be comprising identical surface elements and
nodes.

In the context of early manual simulations, a prevalent
challenge is the necessity of assigning geometries to physical
groups. These allow the relevant geometries to be used in
simulations by combining a number of volume or surface ele-
ments into groups, thus enabling the definition of parameters
for specific parts of the model. This method ensures the accu-

rate assignment of materials, initial conditions, or forces to
components or surfaces. Within the gmsh framework, physical
groups are enumerated in the order in which they are created.
This necessitates maintaining precise records for each group,
as the final model may contain a substantial number of them
for large FPCs with higher amounts of components. Using
said records, the subsequent assignment of groups is eased by
mapping all the geometries to their corresponding group ID.
This method enables referencing components with terms like
“PartX.PadY” instead of the number of the associated physical
group. It is imperative this is done before starting the meshing
process; otherwise, changes will not be included in the mesh.

3) Meshing: The meshing of the 3-D model is conducted
using gmsh which provides functions to define the grid
size and shape of the generated mesh. This improves mesh
generation for models that consist of both small and large
dimensions. The mesh coarseness is automatically interpolated
between areas of each kind, easing a seamless integration of
those distinct dimensions. This feature is particularly useful
in scenarios involving the simulation of electronic systems of
higher complexity comprising smaller parts, facilitating the
potential of ASIC simulations on their final FPC.

Following the aforementioned meshing process, the geome-
tries are processed into a mesh consisting of smaller surface
and volume elements according to their respective coarseness.
Despite the conversion of the geometry, physical groups are
maintained with the same IDs as previously assigned during
the generation of geometry. This is vital to ensure accurate
mapping to the respective geometric objects (bodies, sur-
faces) during the simulation. For simulation, the mesh can
be exported into any file format supported by gmsh. Most
commonly, this is .msh for Palace or .unv for Elmer.

At this point, it is noteworthy that all the functionality
demonstrated is completely integrated within our tool. Con-
trary to the workflow exhibited in our previous paper [1], there
is no dependency on FreeCAD and Salome Meca anymore
in our workflow, as the geometry and mesh generation is
processed internally by facilitating the direct gmsh Python
interface. This integration streamlines the workflow, leading to
reduced computing times and a minimized memory footprint.

4) Transformations: Transformations perform the transition
from a flat FPC to its final shape. They define the regions
where the circuit will undergo bending and the configuration
of the resulting shape. In addition, they provide the possibility
to restrict the deformation to specific regions without affecting
neighboring areas, as shown in Figs. 4 and 5. The transfor-
mation is computed by an algorithm that iterates through all
the nodes in the mesh confined inside the boundaries of the
transformation. The position of each node between the start
and end line is then mapped to an angle; nodes on the start line
remain unaltered and will be assigned an angle of 0°, while
nodes on the end line will undergo a bending by the maximum
angle specified by the parameters for the transformation.

Transformations are hereby characterized as rectangles with
coordinates Xmin, Xmax> Ymin» a0d Ymax. Beginning at the start
line (red line in Fig. 5) with a bending angle of 0°, the
algorithm then iterates over all the nodes of the mesh between
there and the end line of the specific transformation area. For
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every node with position § = [px, py p-]", the position factor
t is calculated [see (1)]. Based on the maximum angle @pmax
configured in the JSON file and the value of ¢, the bending
angle « is calculated for j so that the last points on the end line
are transformed with apm,x [see (2)]. Moreover, the bending
radius r is determined by the width of the transformation
rectangle [see (3)]. For each node, the bend is then performed
using a coordinate transformation matrix 7" to calculate the
new position [7’ of the node [see (4)]. Equation (5) shows
an example transformation matrix 7 for a bend in positive z-
direction while moving in positive x-direction relative to the
flat PCB

{= Px — Xmin (1)
Xmax — Xmin
@ = Uy - 1 (2)
r= Xmax — Xmin (3)
Tmax
p=|py|=T-1"" 4)
) P2
| P, 1
[0 0 —sin(@) Xmin+ rsin(a)
0 1 0 0
T=10 0 cos@ r(=cosa) )
[0 0 0 1

Occasionally, there are still nodes remaining beyond the end of
the transformation. This requires a so-called residual transfor-
mation as visualized in Fig. 5 (highlighted in orange). These
areas must be kept in a straight plane, but it is still necessary
to move and rotate them so that they tangentially extend the
transformed FPC at the end line of the transformation. This is
facilitated by a rotation of all the nodes just as the last nodes
on the end line so they form a straight plane tangentially to the
transformed area. Residual transformations are described by a
transformation matrix R as calculated in (6). The transformed
nodes are then calculated as in (4)

cos (@) 0 —sin (@) —xmax €OS (@) + Xmin + 7 sin (@)
0 1 0 0

sin(a@) 0 cos(@) —Xmaxsin(a@) + r(1 —cos(a@))
0 0 0 1

(6)
More complex cases are transformations that bend the geom-
etry along a line that is not parallel to either the x- or y-axis.
In this case, the line connecting the first two points g, and j,
of the transformation outline is used as the bending line, with
the other points specifying the boundary of the transformation.
Since the conventional x or y coordinates are inadequate for
the distance to the start or end line, a more elaborate approach
is required.

As a preliminary step, the start line of the transformation is
converted into a linear equation, as illustrated in Fig. 8. Given
the coordinates of the start line, specified as p, = (x4 ya)
and g, = (xp,¥p), along with the minimum and maximum
dimensions of the boundary of the transformation scope,
designated as Xmin, Xmax> Ymin» and Ymax, the slope m with
the inclination angle @, of the start line can be calculated by
(7). Subsequently, this parameter can be used to retrieve the
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intercept n [see (8)] to create the line equation [see (9)]. From
there, the y values at the lowest and highest x coordinate of
the transformation need to be calculated by (10) and (11),
respectively. The result is a line from gy = (Xmin,Yo) to
P1 = (Xmax,y1) that elongates the start line across the entire
transformation scope and enables the distance of individual
points to be calculated

m= Ya = Yb 7
Xa — Xp
’1:}’u—m'xa+()’b—)’a¢) (8)
y=m-x+n 9)
Yo =M " Xmin + 1 (10)
VI =M Xmax + 1 (11)
a, = arctanm (12)
[cose, —sina; 0  y,sine, — x,cosa;,
Mo = sina, cosa, O —x;sina,—y,cosa,
ul 0 0 1 0
| 0 0 0 1
(13)
[cos—a, —sin—-a, 0 x,
_|sin-a; cos-a, 0 y,
| 0 0 0 1
[0 0 —sin(e) rsin (@)
0 1 0 0
T=10 0 cos(@ r(l-cos@) (15
[0 0 0 1
cos(a) 0 —sin(@) — Xmax €08 (@) + rsin (@)
B 0 1 0 0
sin(@) 0 cos(@) — xmaxsin(a)+ r(1 —cos(a))
0 0 0 1
(16)
P =Mg-T Mg - p. (17)

This formula can be used to get the distance of the trans-
formation boundary’s most remote point. This is assumed
to be the length / of the transformation that corresponds to
the maximum bending angle a@p,. For each point in the
transformation domain, its distance to the start line can be
determined and mapped to a bending angle « similar to (1)—(3)
by substituting Xmax — Xmin With the maximum distance.
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Fig. 9. Individual steps for a bend along lines not parallel to the x- or y- axis (a) original shape/mesh, (b) rotated geometry, (c) bent geometry, and (d) final

shape (rotated back to original position).

Fig. 10. Rendering of the FPC in its straight and bent shape.

The transformation itself is executed in the same manner
as an axis-parallel bend with deformation along the positive
x-axis outlined in (4) and (5). However, prior to this, the
affected geometry must be rotated around the point j, by the
inclination angle a,. The same procedure is repeated again
once the deformation is computed to rotate the bent geometry
back to the start line of the transformation as depicted in Fig. 9.

This objective is accomplished by considering the rota-
tion around a point as a translation of the entire affected
geometry, such that pg, lies at the origin of the coordinate
system, followed by a subsequent translation back. To min-
imize computing time, the subsequent translation back and
the translation to the origin for the second rotation can be
omitted if the bending matrix and the residual matrix are
adjusted accordingly like in (15) and (16), leading to the
pre- and postbending transformation matrices given in (13)
and (14), derived from the dot product of the corresponding
transformation and rotation matrices.

The final coordinates of each node are calculated according
to (17).

III. EXPERIMENTAL RESULTS

A use case was developed to assess the capabilities of
the workflow. This involves an FPC containing an ESP32-H2
system-on-a-chip (SoC) with several peripheral components.
Besides passive components, these include a low dropout
(LDO) voltage converter for supplying the processor with
power via USB, a BME280 temperature/humidity sensor, and a
CR2032 lithium coin cell as primary power supply. The circuit

is designed for collecting data concerning heat and humidity
while being operated from a coin cell battery, with subsequent
wireless transmission of the acquired data to a base station
via ZigBee. However, it should be noted that the processor
will generate waste heat, leading in turn to further heating of
the sensor. This is detrimental to the precision of the sensor
as it might heat it to a temperature higher than the ambient
temperature. Furthermore, when powered via USB, the LDO
will lead to an additional temperature increase at the sensor
as it has to reduce the USB bus voltage of 5V to 3.3V needed
by the ESP32-H2. The distinct feature of this scenario is the
FPC’s ability to bend around the CR2032 battery as illustrated
in Fig. 10, thus eliminating the requirement for a dedicated
battery holder and minimizing spatial dimensions. However,
it is detrimental to sensor precision. This originates from the
coin cell acting as a heat conductor, effectively providing a
low-heat-resistance path from the parts generating heat to the
Sensor.

To minimize the heating effect, the temperature rise caused
by heat dissipation from the processor and the LDO is of
interest. In the flat form (Fig. 10), the only way for the heat
to reach the sensor is via the copper traces. As a significant
amount of heat will be conducted by the battery when the
FPC is bent around it, it is best to do a simulation, as the
temperature at the sensor is expected to increase.

For the purpose of this demonstration, an FEM simulation
was set up in Elmer. The UNV format was chosen when
exporting the mesh to guarantee a seamless import into Elmer.
The pads underneath the LDO regulator and the SoC were
configured to act as heat sources with a constant temperature
of 30° C and 25° C, respectively. This was done to simulate
the waste heat generated from these components. The substrate
and copper traces were configured to emit heat with a thermal
coefficient of 100 Wm™ K~! to the surrounding air. The
ambient temperature and also the initial temperature of each
component were set to 20° C. The materials used in this
simulation included copper for the traces and pads, and PI
for the substrate. As the electric components are conducting
heat not as efficiently as copper but more efficiently than
the substrate, they were modeled via the steel material for
simplicity, just as the CR2032 battery.
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Fig. 12. Thermal FEM simulation — straight board (top) versus bent board
(bottom).

Upon completion of the simulation, the .vtu file generated
by the Elmer solver was then imported into ParaView [18]
to plot the temperatures on the mesh. To further augment
visualization, a gradient operation was created in ParaView
to illustrate the vector of the heat flux using arrows with
proportional length and direction as depicted in Fig. 11. It
turned out that the temperature at the BME280 sensor was
20.3° C in the flat configuration (Fig. 12 top). In the bent
configuration with the battery as an additional thermal bridge
(see Fig. 12 bottom), the temperature increased by nearly 2K
to 22.2° C. The circular pad area heated by the battery was
clearly identified as the cause for the additional heating of the
Sensor.

IV. CONCLUSION

We presented a comprehensive workflow for designing,
modeling, and simulating FPCs using exclusively open-source
tools. Our extended tool FTL is free of dependencies on
external programs when transforming the 2-D layout of a
circuit board into a detailed 3-D model. The latter can be
bent according to user-defined parameters. The outcome is
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available for visualization and simulation purposes, creating
powerful possibilities for analyzing the behavior of flexible
electronics prior to production.

The integration of a process-dependent renderer enables the
utilization of the same 2-D geometry file for the generation
of a variety of different models. This approach eliminates the
necessity to redefine technology or stackup parameters within
any individual model. In addition, it facilitates the generation
of multiple different models from a single input geometry,
enabling users to execute comparative simulation studies.

By rendering these models in 3-D, users gain a more
profound understanding of the final shape of flexible circuits
and their interaction with mechanical components, bridging
the gap to mechanical CAD programs for further development
of casings or mechanical parts. The generated geometries
facilitate the creation of accurate models for simulating crucial
electrical, thermal, and mechanical parameters. This advance-
ment empowers small companies and open-source projects
to design, visualize, and simulate complex flexible circuits,
thereby enhancing design accuracy and fostering innovation
in FPC development.
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