
Utilizing 2D and 3D Rectilinear Blocks for Efficient
IP Reuse and Floorplanning of 3D-Integrated Systems

Robert Fischbach†∗, Johann Knechtel∗, Jens Lienig
Institute of Electromechanical and Electronic Design

Dresden University of Technology, Dresden, Germany
robert.fischbach@eas.iis.fraunhofer.de, johann.knechtel@ifte.de, jens.lienig@ifte.de

ABSTRACT

The reuse of predesigned intellectual property (IP) blocks is critical
for the commercial success of three-dimensional (3D) electronic
circuits. In practice, IP blocks can be specified as rectangular as
well as rectilinear 2D blocks. The 3D equivalent of 2D rectilinear
blocks, orthogonal polyhedra, may be utilized for modeling tightly
interconnected (sub-)modules placed onto adjacent dies or for de-
sign automation of versatile 3D-integrated systems. Such complex
block geometries have not been adequately considered until now.
We propose a new 3D layout representation that enables native 3D
floorplanning of complex-shaped 3D blocks, i.e., orthogonal poly-
hedra spread onto multiple dies. Furthermore, it can also be ap-
plied during 3D floorplanning of both rectangular and rectilinear
2D blocks. In the former case, experiments reveal superior esti-
mated wirelength and packing density compared to previous work.

Categories and Subject Descriptors

B.7.2 [Integrated Circuits]: Design Aids—Layout

General Terms

Algorithms, Design

Keywords

3D integration, floorplanning, intellectual property blocks reuse,
block geometries: orthogonal polyhedra, 3D design, representation

1. INTRODUCTION
Three-dimensional (3D) integration of electronic circuits has re-

cently gained much attention as a promising option to fulfill ever
increasing demands on functionality and performance while limit-
ing cost and power consumption [1–5]. In this context, a coarse
design style where available 2D intellectual property (IP) blocks
are reused is favored in terms of reliability, cost, testability and de-
sign effort [6–8]. In practice, hard IP blocks are generally specified

†Currently with Fraunhofer Institute for Integrated Circuits, Design
Automation Division, Dresden, Germany.
∗The work of R. Fischbach and J. Knechtel was supported by the
German Research Foundation under project 1401/1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISPD’13, March 24–27, 2013, Stateline, Nevada, USA.
Copyright 2013 ACM 978-1-4503-1954-6/13/03 ...$15.00.

as rectangular as well as rectilinear blocks. Thus, the handling of
rectilinear 2D blocks or rectilinear 3D block compounds may be
required for 3D design, as further motivated in Section 2.1. De-
sign automation of more complex 3D systems such as System-on-
Package (SoP), sensor/chip co-design, or micro-electro-mechanical
systems (MEMS) stacks [9] may also benefit from the ability to
handle rectilinear 3D blocks. However, related approaches require
3D layout representations which are able to efficiently handle such
complex-shaped blocks in the 3D solution space.

Prior work on 3D layout representations and floorplanning has
overlooked complex-shaped blocks or related block compounds so
far. We note that some publications consider (rectangular) block
alignment [10–13], which enables simple block compounds. To do
so, the related studies account for additional constraints, possibly
decreasing efficiency of solution-space exploration. For example,
additional edges for constraint graphs have to be determined in an
iterative fashion [10]. In any case, most recent work has neglected
(to align) rectilinear blocks. Although such blocks have been suc-
cessfully considered in some 2D representations such as Corner
Block List [14], Sequence Pair [15], Bounded Slicing Grid [16] or
B*-Tree [17], rarely have they been considered in their counterparts
of 3D representations. The sole exception, the (very recent) work
by Quiring et al. [18], extended the T-Tree [19] to enable 3D align-
ment of rectilinear 2D blocks. However, their approach enforces
alignment to a common reference point. This means that complex-
shaped 3D blocks including offsets between partial (sub-)blocks on
several dies cannot be represented.

In the present work, we propose a 3D layout representation called
3D Moving Block Sequence (3D-MBS). Our representation enables
handling of complex-shaped 3D blocks in a straightforward and ef-
ficient manner. However, it is not restricted to such blocks; 3D
floorplanning of both rectangular and rectilinear 2D blocks is also
possible. Furthermore, as a “real” 3D representation1, 3D-MBS al-
lows continuous spreading of blocks in the vertical dimension. We
believe this approach is useful for next-generation 3D circuits with
versatile IP reuse, massive integration densities or for more com-
plex electronic systems like MEMS stacks.

The remainder of this paper is structured as follows. In Section 2,
we provide relevant background and motivate the use of complex-
shaped 3D blocks. We then discuss our representation in Section 3
in detail. Experimental results are provided in Section 4; we con-
clude in Section 5 with recommendations on efficient utilization of
complex-shaped blocks in 3D electronic systems.

1It is common to distinguish so-called 2.5D layout representations
and inherent or real 3D representations. In the former case, sev-
eral instances of a 2D representation are used to represent multiple
dies. Vertical block relations are often modeled by additional con-
straints, likely restricting the flexibility of optimization techniques.
For real 3D representations, blocks and their relations are modeled
in a continuous (possibly larger) 3D solution space.

11

Professor Lienig
Schreibmaschinentext
© ACM 2013. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2013 ACM International Symposium on Physical Design (ISPD), pp. 11-16, 2013.

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

2. BACKGROUND AND MOTIVATION

2.1 Complex-Shaped Blocks
As mentioned in Section 1, accounting for rectilinear blocks has

been acknowledged as a relevant feature in traditional (2D) physi-
cal design automation. Besides handling rectilinear hard IP blocks,
related techniques may be helpful to enforce abutment of particular
rectangular blocks or to consider special layout constraints [20].
Figure 1b illustrates rectilinear design blocks, which result from
fundamental L-, Z-, and T-shapes (Fig. 1a) by assigning a specific
(active layer) thickness. Complex-shaped blocks (Fig. 1c), pos-
sibly spread onto multiple dies, can be efficiently described by
orthogonal polyhedra (OPa) — an orthogonal polyhedron is the
three-dimensional equivalent of a rectilinear block. Polyhedra in
general are geometric solids bounded by flat faces and constructed
by rectilinear edges. OPa are special polyhedra where faces meet
exclusively at right angles. This simplification correlates well with
typical design constraints and may reduce algorithmic complexity
while efficiently handling corresponding blocks.

Enabling complex-shaped blocks for 3D floorplanning provides
several benefits. First, several studies on 3D integration [11,12,21]
have shown that partitioning design blocks into (few) sub-modules
(carefully placed and vertically aligned among adjacent dies) can
help to reduce intra-block as well as inter-block wirelength, la-
tency and thermal-related leakage. Given rectilinear 2D (or ded-
icated 3D) design blocks, such approaches can be facilitated by
modeling rectilinear block compounds, i.e., OPa. Second, utiliz-
ing OPa may decrease design complexity for large-scale systems
containing (rectilinear) blocks and dedicated inter-die interconnect
structures [3, 5, 22] — related blocks and interconnect structures
can be abstracted as OPa during early design phases. Note that
such a modeling approach is not restricted by the integration tech-
nology since characteristics of varied interconnects like through-
silicon vias, face-to-face bonds or monolithic inter-die vias can be
annotated to the modeled 3D blocks for subsequent consideration.
Third, custom vertical-alignment constraints on rectilinear blocks
can be directly and efficiently enforced by modeling OPa. Fourth,
due to utilization of possibly complex-shaped modules, the design
of (future) versatile 3D systems may benefit notably from the ca-
pability of handling arbitrary rectilinear 3D blocks. Note that the
aforementioned modeling of OPa is out of scope for this paper; so-
phisticated techniques may be required for appropriate modeling.

2.2 Moving Block Sequence
The Moving Block Sequence (MBS) is a 2D layout representa-

tion based on a constructive block-insertion process. Unlike other
representations where rectilinear blocks are mainly handled by de-
termining rectangular-block subsets and introducing placement con-
straints (e.g. [20]), the MBS can directly process such blocks. There-
fore, it is an interesting candidate for an efficient 3D representation;
our related extension is discussed in Section 3. In the following, the
basic concept of MBS is explained for readers convenience; further
details can be found in [23].

Based on two sequences π and IP , a constructive process trans-
forms a given abstract solution MBS = (π, IP) into a physi-
cal layout. Sequence π = (π0, π1, . . . , πn−1) is a permutation
of all n blocks and defines the block-insertion order. Sequence
IP = (IP1, IP2, . . . , IPn−1) defines for each block πi one out of
four possible insertion positions, as illustrated in Fig. 2a. Note that
for the first-to-insert block π0 the position IP0 is a fixed special
case, i.e., the coordinate origin, thus it is not included in IP . For
each insertion position, rules for packing the block towards the co-
ordinate origin are applied as follows (Fig. 2). For positions i or iv,
packing is only considered downwards or to the left, respectively.
For position ii, packing is performed primarily downwards and to

(a)

(b)

(c)

Figure 1: Different types of design blocks. (a) Abstracted

blocks in L-, Z-, and T-shaped polygons. (b) Related “real”

blocks require a thickness, thus extend the shapes to rectilinear

2D blocks. (c) Complex-shaped blocks, spread onto single or

multiple dies, can be described as orthogonal polyhedra (OPa).

A

C
D

C
D

C

(a) (b) (c)

A

B

C
DA

B

C
DA

C
D

(d) (e) (f)

i ii
iii

iv

Figure 2: Layout generation of MBS with π = (C,D,A,B)
and IP = (iv, ii, i). (a) Four different insertion positions are

defined. Each position is given specific rules for block pack-

ing. (a) to (f) illustrate the stepwise layout generation during

constructive block insertion.

the left only if no downward movement is applicable; for position
iii, left is the main direction and the downward movement is sec-
ondary. Based on the properties of the two sequences, n! · 4(n−1)

different abstract solutions exist for n blocks. The layout genera-
tion has a runtime complexity of O(n2).

Due to the constructive process, no block overlaps occur and
only valid solutions are provided. For efficient packing, each block
is described by its boundary edges. Given all block edges, consider-
ing the edges perpendicular to the packing direction is sufficient for
collision detection while inserting a new block. The constructive
approach also enables a flexible consideration of additional con-
straints, such as block symmetries and pre-placed blocks. How-
ever, not all possible layouts can be represented. Thus, the MBS is
a compacting but not a complete layout representation. Experimen-
tal results suggest a similar solution quality compared to common
2D layout representations [23].

3. 3D MOVING BLOCK SEQUENCE
We propose a new real 3D layout representation called 3D Mov-

ing Block Sequence (3D-MBS), inspired by main features of the
MBS (Section 2.2). In particular, we extend the constructive block-
insertion process of MBS to the continuous 3D space. Furthermore,

12

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

Professor Lienig
Schreibmaschinentext
© ACM 2013. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2013 ACM International Symposium on Physical Design (ISPD), pp. 11-16, 2013.

the consideration of OPa as well as an efficient collision detection
are proposed. Like the original MBS, the 3D-MBS is a non-slicing
packing representation.

3.1 Abstract Layout Representation
Similar to the MBS, two sequences defined as follows are used

for abstract representation of 3D layouts.

3D-MBS = (π, IP ′) π = (π0, π1, . . . , πn−1)
IP ′ = (IP ′

1, IP
′
2, . . . , IP

′
n−1)

where n denotes the number of blocks, π defines the insertion or-
der and IP ′ the insertion positions of blocks. Differing from the
MBS, we propose 3D insertion positions for the 3D-MBS. The po-
sitions are denoted as an ordered sequence IP ′

i = C1C2C3 |Ci ∈
{λ,X, Y, Z} of coordinates, where λ represents the omission of
the particular coordinate. The twelve applied positions are illus-
trated in Fig. 3a. By proposing specific block-insertion rules (Sec-
tion 3.2) for various types of positions, we are able to fully and
efficiently exploit the 3D space.

The number of possible solutions is defined by n! permutations
of π and 12(n−1) variations of IP ′; the overall number of abstract
solutions is n! · 12(n−1). Besides random generation of both se-
quences, an initial pair can be altered to obtain new solutions (Sec-
tion 4). Fig. 4 illustrates an exemplary exchange of blocks.

3.2 Layout Generation
Given an abstract solution 3D-MBS, the constructive process for

layout generation stepwise considers pairs (πi, IP
′
i) where 1 ≤

i ≤ n− 1. Note that block π0 is always placed in the corner of the
coordinate origin, thus no pair (π0, IP

′
0) is required.

During insertion of block πi, its position IP ′
i defines the ini-

tial location and allowed shifting directions. To obtain IP ′
i , we

keep track of the bounding box covering previously inserted blocks.
Each outer corner of this box describes a particular insertion posi-
tion, i.e., initial location (Fig. 3a). The block-shifting directions (to-
wards the coordinate origin, i.e., packing directions) are restricted
by the insertion-position types illustrated in Fig. 3a as follows. The
red (dark gray) positions provide only one direction (i.e., either
along x, y, or z axis), whereas the green (medium gray) positions
offer two degrees of freedom. In that case, the shifting process is
partitioned into primary and secondary movement, where the first
coordinate defines the primary movement direction. A movement
along the secondary direction is conducted only if encountering an
obstacle during packing along the primary direction. The three yel-
low (light gray) positions allow movements comprising all three
dimensions. That means a ternary shifting direction is considered
when both the primary and secondary direction are blocked. Be-
sides previously placed blocks, the coordinate-axis planes (of the
first quadrant) are considered as fixed obstacles in any case. Due to
the constructive process, additional constraints such as pre-placed
blocks can be easily accounted for.

(a) (b)
q r

x
y

z

X Y

Z

XY

XZ

YX

YZ

ZX ZY

XYZ YZX

ZXY

min

Figure 3: 3D-MBS characteristics. (a) 3D insertion positions.

(b) Block shifting and marked faces for collision detection.

Figure 4: 3D-MBS solutions and corresponding layouts. The

exchange of block a with blocks b and c can be accomplished

by applying the illustrated modifications to the solution.

The layout-generation process is outlined in Algorithm 1. The
obstacle detection, i.e., face-collision detection, is explained in Sec-
tion 3.3. Note that the runtime complexity of a naive implementa-
tion is O(c ·n2), where c is a complexity factor and collision detec-
tion has to consider all previously placed blocks (worst case). The
term c ·n denotes how many cuboids are required to replace n OPa.

3.3 Collision Detection and Face Segmentation
Block packing is performed in only one direction at any partic-

ular moment, even for insertion positions with multiple degrees of
freedom (Algorithm 1). Checking for overlaps among a limited
subset of block faces is thus sufficient for collision detection, as
elaborated in the following. Handling an orthogonal polyhedron is
based on partitioning its rectilinear faces into six groups. Figure 5
illustrates such dissection into left (red), right (green), upper (blue),
lower (yellow), front (orange), and back (brown) faces. The rele-
vant faces for collision detection are the boundary faces, i.e., the
inner opposing faces of blocks perpendicular to the packing direc-

Algorithm 1: 3D-MBS Layout Generation

Data: number of blocks n; block data B

Input: block-permutation sequence π, insertion-position
sequence IP ′

Output: layout L

1 Insert π0 at position (0, 0, 0) into L;
2 for i ← 1 to n− 1 do
3 Determine bounding box bb of L;
4 Determine initial position P of πi based on IP ′

i and bb;
5 while shifting towards coordinate origin succeeds do
6 Determine boundary faces bfp in primary direction;
7 Determine shortest distance dp of opposing bfp;
8 Perform primary shift of P until dp is reached

(some bfp collide);
9 if degrees of freedom for IP ′

i > 1 then
10 Determine boundary faces bfs in secondary

direction;
11 Determine shortest distance ds of opposing bfs;
12 Perform secondary shift of P until ds is reached

or no more collision of bfp exists (primary shift
possible);

13 if degrees of freedom for IP ′
i > 2 then

14 Determine boundary faces bft in ternary direction;
15 Determine shortest distance dt of opposing bft;
16 Perform ternary shift of P until dt is reached or no

more collision of bfs or bfp exists;

17 Insert πi at position P into L;

13

Professor Lienig
Schreibmaschinentext
© ACM 2013. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2013 ACM International Symposium on Physical Design (ISPD), pp. 11-16, 2013.

tion. Figure 3b illustrates the particular boundary faces of block q;
assume q is already placed and r is to be inserted from the right,
i.e. moved along the x-axis. Then, the left faces of r and the right
faces of q are checked for collision. To do so, these boundary faces
are analyzed for any overlap of their rectangular segments while
considering the segments’ y- and z-coordinates. In case of some
overlapping segments, the shifting amount is defined as the mini-
mal distance min between any pair of related segments. In general,
if no segments are overlapping (this does not apply to Fig. 3b), the
block is to be shifted towards the coordinate-axis plane. Similarly,
block packing towards y- or z-direction considers front and back
or upper and lower faces as boundary faces, respectively.

As indicated, the collision detection can be further enhanced by
face segmentation, i.e., rectilinear faces are segmented into (sepa-
rate) sets of rectangles. Hence, it is sufficient to analyze pairs of
rectangles from different sets in order to detect collisions of related
faces. Note that performing segmentation is required only once for
each block. We predetermined face segments for our experimen-
tal validation (Section 4.1). For practical applications, it may be
advisable to leverage efficient computational-geometry algorithms
for face unfolding and segmentation, e.g., as proposed by Biedl et
al. [24] or Keil [25].

4. EXPERIMENTAL INVESTIGATION
We implement the 3D-MBS for experiments using Python; im-

plementations including varied optimization heuristics can be re-
trieved from [26] (see “Evaluation tool”).

In Section 4.1 we validate the capability of 3D-MBS to handle
OPa properly during 3D floorplanning. We compare with previous
work on 3D representations in Section 4.2. This comparison shows
that 3D-MBS outperforms other work when applying various opti-
mization heuristics.

4.1 Floorplanning of Complex-Shaped Blocks
In order to enable 3D floorplanning of OPa, we modify the bench-

marks ami33 (MCNC suite) and n100 (GSRC suite) [27]. In these
benchmarks we replace 8 and 10 (randomly selected) blocks with
custom blocks, respectively — six rectilinear blocks along with two
OPa in ami33 (Fig. 6) and 6 rectilinear blocks along with four OPa
in n100. We also predetermine rectangular face segments for sim-
plified collision detection (Section 3.3).

We implement our 3D-MBS representation along with a sim-
ulated annealing (SA) engine [28]. In this setup, we focus on
the packing capability of the 3D-MBS. We therefore define the
SA cost function f1 = α1 ∗ A + β1 ∗ WLw where A = hd ∗
wd denotes the (common) die footprint and WLw =

∑
n wn ∗(∑

d HPWL(bbn, d)
)

a weighted wirelength estimate for all nets n.
WLw is determined using the half-perimeter wirelength (HPWL)
metric for net bounding boxes bbn, where net pins are assumed in
the block’s geometric center. Boxes bbn are separately determined
for each related die d in order to estimate intra-die routing more

(a) (b)

Figure 5: An orthogonal polyhedron (a) can be unfolded into

joined rectilinear faces (b). Note that groups of opposite faces

cover the respective same area.

Figure 6: Complex-shaped blocks, for adaption of the bench-

mark ami33. Two new blocks (OPa) spread over multiple dies

(and), the others are single-die rectilinear blocks ().

accurately. Weight (priority) factors wn for nets are given in the
benchmarks. As SA operations we consider the permutation of π,
the variation of randomly selected IP ′

i , and the rotation of ran-
domly selected blocks i. The SA engine is configured to consider 3
dies with a common outline. Results are presented in Table 1. Gen-
erated floorplans are illustrated in Fig. 7. The SA process, i.e., cost
reduction, for an particular optimization run is illustrated in Fig. 8.

Considering these results, we make the following observations.
First, 3D-MBS can be successfully applied to 3D-floorplanning
problems that includes complex-shaped blocks, in particular arbi-
trarily rectilinear 2D and 3D blocks. Second, the packing capability
scales well with the problem size; results for modified n100 (100
modules) are comparable to results for modified ami33 (33 mod-
ules) in terms of die utilization (reported as blocks f.p. in Table 1).
Third, applying SA is a simple yet effective approach. Within few
(hundred) iteration steps, cost for both wirelength and die footprint
can be reduced down to 50% of the initial value.

Since our 3D-MBS is the first real 3D representation to handle
OPa directly, we cannot compare this setup to previous work. How-

Table 1: Final results of five subsequent SA runs. Blocks f.p.
denotes the sum of block footprints in relation to die footprints.

Footprints are reported in μm2, (weighted) wirelength in μm.

Criteria 1st 2nd 3rd 4th 5th

am
i3

3 Die footprint 560011 592735 596573 569504 588464
Blocks f.p. 43.1 % 45.6 % 45.9 % 43.9 % 45.3 %
Wirelength 2483694 2394242 2444321 2541327 2395956

n1
00

Die footprint 93009 95718 93796 98356 97940
Blocks f.p. 43.9 % 45.2 % 44.3 % 46.4 % 46.3 %
Wirelength 278552 280264 284582 288954 293002

1st die 2nd die 3rd die

Figure 7: Floorplans for adapted ami33 (top) and n100 (bot-

tom) obtained by applying SA for 3D-MBS.

14

Professor Lienig
Schreibmaschinentext
© ACM 2013. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2013 ACM International Symposium on Physical Design (ISPD), pp. 11-16, 2013.

0 20 40 60 80 100 120 140

Annealing steps

0e+00

1e+06

2e+06

3e+06

4e+06

5e+06
C

os
ts

pr
o

ra
ta

Annealing process for modified ami33 benchmark

Weighted HPWL in μm

Footprint area in μm2

0 20 40 60 80 100 120 140

Annealing steps

0e+00
1e+05
2e+05
3e+05
4e+05
5e+05
6e+05
7e+05

C
os

ts
pr

o
ra

ta

Annealing process for modified n100 benchmark

Weighted HPWL in μm

Footprint area in μm2

Figure 8: SA process while floorplanning benchmarks includ-

ing complex-shaped blocks. SA is guided by cost function f1.

ever, we can apply 3D-MBS also to 3D floorplanning of common
rectangular blocks, as discussed in the next subsection.

4.2 Floorplanning of Rectangular Blocks
We apply and evaluate further optimization heuristics besides

SA to provide a thorough evaluation of obtainable solution qual-
ity. In particular, we leverage concepts for an evolutionary algo-
rithm (EA) [29] and the Great Deluge algorithm (GDA) [30]. EAs
simulate generic mutations and the survival of the fittest in biol-
ogy. Individuals (i.e., solutions) with favorable features (i.e, low
cost) pass their characteristics to the next generation (selection).
New individuals emerge due to mutation or recombination. In con-
trast, the GDA extends the well-known hill-climbing approach; this
extension is based on a “mountainous” solution space where only
“climbers” on mountains above sea level survive. While increasing
this threshold value, climbers can also “jump” onto higher moun-
tains, i.e., the search process is not restricted by local maxima. Ta-
ble 2 provides the main parameters applied in our experiments.

We compare our 3D-MBS to 4 other real 3D layout representa-
tions, namely T-Tree [19], 3D Slicing Tree [31], Sequence Triple
[32], and Sequence Quintuple [32]. Our implementation of those
representations follows the respective publication’s description. For
the optimization heuristics, only meaningful operations like swap-
ping tree nodes are considered. The applied cost function is de-
fined as f2 = α2 ∗HESA+ β2 ∗WLw where WLw denotes the
weighted wirelength estimate (Section 4.1) and HESA = ws ∗
hs + ws ∗ ds + hs ∗ ds the half of enveloping surface area of the
3D stack where ws, hs and ds denote the die width, die height and
stack height, respectively. Thus, HESA measures the 3D packing
density. Compared to die footprint or packing volume, we observe
that this metric is more efficient in guiding optimization towards a
balanced aspect ratio and limited whitespace. We perform 100 full
optimization runs for each combination of benchmark and repre-
sentation, providing detailed cost distributions. (Such distributions
are helpful for investigations of the solution quality of 3D layout
representations; for further reading refer to [33].) Figure 9 illus-
trates such distributions for the (original) benchmark ami33 as box
plots; results for further MCNC benchmarks are provided in Ta-
ble 3. The reported cost f ′

2 are based on normalized values, i.e.,

Table 2: Applied optimization heuristics parameters

Heuristic Parameter Short description Value

α1 Cost factor for die footprint 0.5
β1 Cost factor for wirelength 0.5
α2 Cost factor for HESA 0.5
β2 Cost factor for wirelength 0.5

SA TStart Initial temperature 1300
TEnd Final temperature 100
TSteps Temperature-reduction steps 25
TSamples Iterations per temperature step 50

EA NParents Parents per generation 8
NChildren Children per generation 5–15
NGen Generations count 30

GDA LInit Initial threshold (normalized) 1.0
NSamples Iterations per threshold level 2000
SVapor Threshold-reduction value 0.005

f ′
2 ∗ i =

∑
i α2/AM(HESA) ∗ HESAi + β2/AM(WLw) ∗

WLwi for i = 100 optimization runs; AM denotes the respec-
tive average means, obtained by analyzing a sufficiently large set
of previously determined solutions.

We observe that 3D-MBS allows us to reduce average cost and
cost variability for all benchmarks when applying various opti-
mization heuristics. This emphasizes the efficiency and flexibility
of 3D-MBS for 3D floorplanning of rectangular 2D blocks, despite
been tailored to handle complex-shaped rectilinear 3D blocks.

5. CONCLUSIONS
The reuse of versatile IP blocks is critical for industry adoption

of 3D-integrated circuits. However, such reuse still faces serious
challenges. In particular, hard IP blocks may exhibit rectilinear
shapes; handling such blocks is not effectively supported by re-
cent 3D layout representations. Furthermore, vertical alignment of
(rectilinear) blocks may be required for several 3D integration sce-
narios, e.g. placement of partitioned design blocks (Section 2.1).
However, recent representations support such alignment only by
(iteratively) generating and evaluating additional constraints, which
likely impedes efficient optimization approaches.

Our proposed layout representation 3D-MBS facilitates the na-
tive handling of orthogonal polyhedra (OPa). It allows us to di-
rectly and thus efficiently handle designs containing blocks in any
rectilinear 2D and/or 3D shape. This also implies that floorplanning
of complex-shaped 3D blocks is supported for the first time. The
3D-MBS is based on the classical (2D) MBS; our approach has the
advantage of preserving the ease of understanding and flexibility of
traditional MBS while supporting OPa and extended collision de-

Sequence
Quintuple

Sequence
Triple

3D Slicing
Tree

T-Tree 3D-MBS
0.05

0.10

0.15

0.20

0.25

N
or

m
al

iz
ed

to
ta

lc
os

ts Evolutionary algorithm
Simulated Annealing
Great Deluge algorithm

Figure 9: Cost box plots for the benchmark ami33. Each box il-

lustrates the interquartile range and the median of normalized

cost f ′
2, obtained by performing optimization 100 times. The

whiskers represent the minimal or maximal cost, respectively.

15

Professor Lienig
Schreibmaschinentext
© ACM 2013. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2013 ACM International Symposium on Physical Design (ISPD), pp. 11-16, 2013.

Table 3: Cost comparison for 3D layout representations (REP)

applied to floorplanning of MCNC benchmarks. Cost f ′
2

are normalized and averaged over 100 optimization runs.

SEQ=Sequence Quintuple, SLT=Slicing Tree, SET=Sequence

Triple, TTR=T-Tree, Our=3D Moving Block Sequence.

REP apte xerox hp M198 ami33 ami49 playout ø

Si
m

ul
at

ed
A

nn
ea

lin
g SEQ 0.077 0.120 0.077 0.148 0.150 0.136 0.087 0.113

SLT 0.042 0.087 0.054 0.082 0.083 0.068 0.047 0.066
SET 0.068 0.112 0.065 0.122 0.123 0.109 0.072 0.096
TTR 0.044 0.099 0.057 0.081 0.082 0.067 0.047 0.068
Our 0.042 0.088 0.055 0.074 0.074 0.060 0.045 0.062

E
vo

lu
tio

na
ry

A
lg

or
ith

m SEQ 0.142 0.180 0.138 0.214 0.215 0.204 0.185 0.183
SLT 0.069 0.128 0.089 0.122 0.125 0.112 0.086 0.105
SET 0.117 0.160 0.121 0.153 0.160 0.137 0.126 0.139
TTR 0.081 0.122 0.073 0.095 0.096 0.082 0.062 0.087
Our 0.056 0.109 0.062 0.079 0.080 0.069 0.056 0.073

G
re

at
D

el
ug

e
A

lg
or

ith
m SEQ 0.099 0.138 0.092 0.126 0.127 0.114 0.075 0.110

SLT 0.043 0.101 0.068 0.070 0.071 0.050 0.033 0.062
SET 0.088 0.133 0.085 0.096 0.097 0.080 0.053 0.090
TTR 0.053 0.115 0.065 0.076 0.076 0.054 0.035 0.068
Our 0.041 0.093 0.059 0.069 0.069 0.049 0.038 0.060

tection. The proposed techniques may be extended to furthermore
facilitate custom design constraints, like preplacement.

The experimental investigation reveals the effectiveness of 3D-
MBS for 3D floorplanning of complex-shaped 3D blocks, even
along with rectangular and rectilinear 2D blocks. Furthermore, we
show that applying 3D-MBS for 3D floorplanning of solely rect-
angular 2D blocks allows us to reduce cost compared to previous
work. Due to the efficiency of 3D-MBS, this holds true for various
optimization heuristics and benchmarks. Both observations sug-
gest 3D-MBS as an attractive representation, enabling the reuse of
arbitrary rectilinear IP blocks and related 3D-floorplanning tasks.

6. REFERENCES
[1] K. Banerjee et al., “3-D ICs: A novel chip design for improving

deep-submicrometer interconnect performance and systems-on-chip
integration,” Proc. IEEE, vol. 89, no. 5, pp. 602–633, 2001. DOI:
http://dx.doi.org/10.1109/5.929647

[2] G. H. Loh, Y. Xie, and B. Black, “Processor design in 3D
die-stacking technologies,” Micro, vol. 27, pp. 31–48, 2007. DOI:
http://dx.doi.org/10.1109/MM.2007.59

[3] S. Borkar, “3D integration for energy efficient system design,” in
Proc. Des. Autom. Conf., pp. 214–219, 2011. DOI:
http://dx.doi.org/10.1145/2024724.2024774

[4] T. Thorolfsson et al., “Logic-on-logic 3D integration and
placement,” in Proc. 3D Sys. Integr. Conf., pp. 1–4, 2010. DOI:
http://dx.doi.org/10.1109/3DIC.2010.5751451

[5] D. H. Kim et al., “3D-MAPS: 3D massively parallel processor with
stacked memory,” in Proc. Int. Solid-State Circ. Conf., pp. 188–190,
2012. DOI: http://dx.doi.org/10.1109/ISSCC.2012.6176969

[6] X. Dong, J. Zhao, and Y. Xie, “Fabrication cost analysis and
cost-aware design space exploration for 3-D ICs,” Trans.
Comput.-Aided Des. Integr. Circuits Sys., vol. 29, no. 12, pp.
1959–1972, 2010. DOI:
http://dx.doi.org/10.1109/TCAD.2010.2062811

[7] D. H. Kim, R. O. Topaloglu, and S. K. Lim, “Block-level 3D IC
design with through-silicon-via planning,” in Proc. Asia South
Pacific Des. Autom. Conf., pp. 335–340, 2012. DOI:
http://dx.doi.org/10.1109/ASPDAC.2012.6164969

[8] J. Knechtel, I. L. Markov, and J. Lienig, “Assembling 2-D blocks
into 3-D chips,” Trans. Comput.-Aided Des. Integr. Circuits Sys.,
vol. 31, no. 2, pp. 228–241, 2012. DOI:
http://dx.doi.org/10.1109/TCAD.2011.2174640

[9] M. Schuenemann et al., “MEMS modular packaging and interfaces,”
in Proc. Elec. Compon. Technol. Conf., pp. 681–688, 2000. DOI:
http://dx.doi.org/10.1109/ECTC.2000.853232

[10] J. H. Y. Law, E. F. Y. Young, and R. L. S. Ching, “Block alignment
in 3D floorplan using layered TCG,” in Proc. Great Lakes Symp.

VLSI, pp. 376–380, 2006. DOI:
http://dx.doi.org/10.1145/1127908.1127994

[11] R. K. Nain and M. Chrzanowska-Jeske, “Fast placement-aware 3-D
floorplanning using vertical constraints on sequence pairs,” Trans.
VLSI Syst., vol. 19, no. 9, pp. 1667–1680, 2011. DOI:
http://dx.doi.org/10.1109/TVLSI.2010.2055247

[12] Y. Liu et al., “Fine grain 3D integration for microarchitecture design
through cube packing exploration,” in Proc. Int. Conf. Comput. Des.,
pp. 259–266, 2007. DOI:
http://dx.doi.org/10.1109/ICCD.2007.4601911

[13] X. Li, Y. Ma, and X. Hong, “A novel thermal optimization flow
using incremental floorplanning for 3D ICs,” in Proc. Asia South
Pacific Des. Autom. Conf., pp. 347–352, 2009. DOI:
http://dx.doi.org/10.1109/ASPDAC.2009.4796505

[14] Y.-C. Ma et al., “General floorplans with L/T-shaped blocks using
corner block list,” J. Comput. Sci. Technol., vol. 21, pp. 922–926,
2006. DOI: http://dx.doi.org/10.1007/s11390-006-0922-y

[15] K. Fujiyoshi and H. Murata, “Arbitrary convex and concave
rectilinear block packing using sequence-pair,” Trans.
Comput.-Aided Des. Integr. Circuits Sys., vol. 19, no. 2, pp.
224–233, 2000. DOI: http://dx.doi.org/10.1109/43.828551

[16] M. Kang and W. W.-M. Dai, “General floorplanning with L-shaped,
T-shaped and soft blocks based on bounded slicing grid structure,”
in Proc. Asia South Pacific Des. Autom. Conf., pp. 265–270, 1997.
DOI: http://dx.doi.org/10.1109/ASPDAC.1997.600145

[17] G.-M. Wu, Y.-C. Chang, and Y.-W. Chang, “Rectilinear block
placement using B*-trees,” in Proc. Int. Conf. Comput. Des., pp.
351–356, 2000. DOI: http://dx.doi.org/10.1109/ICCD.2000.878307

[18] A. Quiring et al., “3D floorplanning considering vertically aligned
rectilinear modules using T*-tree,” in Proc. 3D Sys. Integr. Conf., pp.
1–5, 2012. DOI: http://dx.doi.org/10.1109/3DIC.2012.6263030

[19] P.-H. Yuh, C.-L. Yang, and Y.-W. Chang, “Temporal floorplanning
using the T-tree formulation,” in Proc. Int. Conf. Comput.-Aided
Des., pp. 300–305, 2004. DOI:
http://dx.doi.org/10.1109/ICCAD.2004.1382590

[20] Z. Liu et al., “VLSI fast initial placement with abutment constraints
and L-shaped/T-shaped blocks based on less flexibility first
principles,” in Proc. Int. Conf. Comm. Circ. Sys., vol. 2, pp.
1228–1232, 2004. DOI:
http://dx.doi.org/10.1109/ICCCAS.2004.1346396

[21] M. Healy et al., “Multiobjective microarchitectural floorplanning for
2-D and 3-D ICs,” Trans. Comput.-Aided Des. Integr. Circuits Sys.,
vol. 26, no. 1, pp. 38–52, 2007. DOI:
http://dx.doi.org/10.1109/TCAD.2006.883925

[22] F. Li et al., “Design and management of 3D chip multiprocessors
using network-in-memory,” in Proc. Int. Symp. Comput. Archit., pp.
130–141, 2006. DOI: http://dx.doi.org/10.1109/ISCA.2006.18

[23] J. Liu et al., “Moving block sequence and organizational
evolutionary algorithm for general floorplanning with arbitrarily
shaped rectilinear blocks,” Trans. Evol. Computation, vol. 12, no. 5,
pp. 630–646, 2008. DOI:
http://dx.doi.org/10.1109/TEVC.2008.920679.

[24] T. Biedl et al., “Unfolding some classes of orthogonal polyhedra,” in
Proc. Canadian Conf. Comput. Geom., pp. 70–71, 1998.

[25] J. M. Keil, “Polygon decomposition,” Handbook of Computational
Geometry, vol. 2, pp. 491–518, 2000. DOI:
http://dx.doi.org/10.1016/B978-044482537-7/50012-7

[26] http://www.ifte.de/english/research/3d-design/index.html
[27] http://vlsicad.cs.binghamton.edu/benchmarks.html
[28] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by

simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680,
1983. DOI: http://dx.doi.org/10.1126/science.220.4598.671

[29] T. F. Gonzalez, Handbook of Approximation Algorithms and
Metaheuristics. CRC Taylor & Francis, 2007. DOI:
http://dx.doi.org/10.1201/9781420010749

[30] G. Dueck, “New optimization heuristics: The great deluge algorithm
and the record-to-record travel,” J. Comput. Phys., vol. 104, no. 1,
pp. 86–92, 1993. DOI: http://dx.doi.org/10.1006/jcph.1993.1010

[31] L. Cheng, L. Deng, and M. D. F. Wong, “Floorplanning for 3-D
VLSI design,” in Proc. Asia South Pacific Des. Autom. Conf., pp.
405–411, 2005. DOI: http://dx.doi.org/10.1145/1120725.1120899

[32] H. Yamazaki et al., “The 3D-packing by meta data structure and
packing heuristics,” IEICE Trans. Fundamentals Elec. Comm.
Comput. Scie., vol. 83, no. 4, pp. 639–645, 2000. [Online].
Available: http://ci.nii.ac.jp/naid/110003208571/en/

[33] R. Fischbach, J. Lienig, and J. Knechtel, “Investigating modern
layout representations for improved 3D design automation,” in Proc.
Great Lakes Symp. VLSI, pp. 337–342, 2011. DOI:
http://dx.doi.org/10.1145/1973009.1973076

16

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

lienig
Schreibmaschinentext

Professor Lienig
Schreibmaschinentext
© ACM 2013. This is the author’s version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution.
The definitive version was published in Proceedings of the 2013 ACM International Symposium on Physical Design (ISPD), pp. 11-16, 2013.

