
Please, Fold the Line: Designing Flexible Electronics
Using Open-Source Software

Nico Arnold, Andreas Krinke, Manfred Dietrich, Jens Lienig
Institute of Electromechanical and Electronic Design (IFTE)

Dresden University of Technology, Dresden, Germany
Email: {nico.arnold, andreas.krinke, manfred.dietrich}@tu-dresden.de, jens@ieee.org

Abstract—Predicting the properties of flexible printed circuits
(FPCs) before production is a significant challenge in their
development. Traditional design flows model FPCs in a flat state,
yet simulations of the actual bent shape of the circuits are more
effective in forecasting their behavior in real-world applications.
Currently, only proprietary tools are available for simulating
these 3D geometries, with no open-source alternatives. This paper
introduces a novel open-source software tool that bridges this gap
by transforming two-dimensional layout data from KiCad files
into three-dimensional bent geometries. This transformation is
achieved through segmentation and meshing techniques, enabling
accurate verification of circuit parameters via simulation. The
software facilitates these simulations by generating the necessary
input files, thus supporting a comprehensive open-source design
and verification workflow. This work not only enhances the
accessibility of FPC design and simulation but also underscores
the broader applicability of open-source solutions for printed
circuit board design.

Keywords—flexible circuit, open source, simulation, FEM, FPC

I. INTRODUCTION

Flexible printed circuits (FPCs) provide significant
advantages over traditional rigid printed circuit boards (PCBs).
Particularly beneficial in projects with complex geometries or
limited space, FPCs utilize a bendable substrate (often
polyimide (PI)), in contrast to the fiberglass-reinforced epoxy
(FR4) [1] used in rigid PCBs. The inherent flexibility of FPCs
enables circuits that can adapt to curved surfaces or be folded to
reduce their spatial footprint. Additionally, the material
properties of PI are advantageous in high-frequency (HF)
applications [2]. Despite these benefits, designing FPCs poses
substantial challenges. Conventional layout designs are
executed in 2D, yet the final form of these circuits is inherently
three-dimensional, introducing complexities in visualizing and
planning the final product. Effective design processes must
preemptively address potential issues, such as component
interference, and unwanted electrical or thermal interactions,
such as crosstalk. By ensuring precise placement of components
in the design phase, it is possible to facilitate assembly without
unforeseen violations, and proper functionality in the finished
3D structure.

To date, the respective software is only available under
proprietary licenses from companies like Altium and Cadence.
For smaller companies and projects, the licensing cost is often
too high, raising the demand for a free or open-source
alternative. While existing open-source PCB design tools like
KiCad [3] are widely used to design rigid PCBs, they lack
capabilities to visualize or simulate FPCs in their bent

configurations. Although simulations of rigid PCBs and flat
FPCs can be performed with available open-source
tools [4], [5], there are no known open-source tools for
visualizing or simulating FPCs in their final, three-dimensional
form.

In this paper, we present a workflow that exclusively utilizes
open-source software to visualize and simulate flexible circuits.
We have developed an application that allows users to bend
circuits designed in the open-source program KiCad by applying
specific bending parameters, filling the gap between FPC design
and simulation. To illustrate the capabilities of this workflow,
we use the design of the example circuit in Section III to
demonstrate the transformation to its bent configuration and the
thermal simulation of the generated geometry.

Figure 1 Common simulation workflow with our contribution to transform
geometries highlighted

The source code of our program is licensed as open-source
software and available on GitHub [6] for anyone to use and
modify.

II. METHOD

In this section, we first describe our workflow for designing
an FPC as shown in Fig. 1 (Sec. II-A), and then explain the
detailed implementation of our new program (Sec. II-B).

A. Workflow

Our workflow begins with the design of the circuit as a flat
PCB in KiCad [3]. Extra space needs to be reserved for the
bending areas, as visible in the middle of the PCB shown in
Fig. 2. A KiCad plugin was created to enable users to draw the
bending areas and adjust their parameters (e.g. bending angle,

direction). This information is then exported as a JSON file
together with the paths to the 3D (STL) files of the individual
layers.

The KiCad layout file (.kicad_pcb) is used to generate the
STL files of the substrate and the copper traces by using the
macro fcad_pcb [7] in FreeCAD [8]. This macro extrudes the
2D polygons representing the copper routes into a 3D stack of
copper wires and substrate layers. Starting from there, the 3D
geometries are meshed and then exported as STL files.

We developed an open-source program to bend the 3D
circuit geometry. The 3D meshes generated from kicad_pcb are
used as a data source for the transformation algorithm explained
in Sec. II-B. Before the transformation, the area to be bent is
highlighted, as shown in Fig. 2. After confirmation, the
algorithm is executed, the bent circuit board is visualized and
can be exported to FreeCAD in order to populate parts.

The output of our program can be used for simulations. For
this, the bent geometries can be further processed in
SALOME [9] for advanced mesh operations and, for example,
imported into Elmer [10] to enable Finite Element Method
(FEM) simulations of the transformed circuit. Another option is
to use straight geometries in OpenEMS [11] to execute Finite
Difference Time Domain (FDTD) simulations, as the FDTD
method is not suited for bent geometries.

Figure 2 FPC rendered in KiCad’s 3D viewer

𝑡 =
𝑝x − 𝑥min

𝑥max − 𝑥min
 (1)

𝛼 = 𝛼max ⋅ 𝑡 (2)

𝑟 =
𝑥max − 𝑥min

𝛼max
 (3)

𝑝′⃗ =

𝑝x′

𝑝y′

𝑝z′

= 𝑇 ⋅

𝑝x
𝑝y

𝑝z

1

 (4)

𝑇 =

0 0 −sin(𝛼) 𝑥min + 𝑟sin(𝛼)
0 1 0 0
0 0 cos(𝛼) 𝑟 1 − cos(𝛼)

 (5)

𝑅 =

cos(𝛼) 0 −sin(𝛼) −𝑥maxcos(𝛼) + 𝑥min + 𝑟sin(𝛼)
0 1 0 0

sin(𝛼) 0 cos(𝛼) −𝑥maxsin(𝛼) + 𝑟 1 − cos(𝛼)
 (6)

B. Implementation

In our Python program, the first step is to parse and import the
meshing information for copper and substrate layers from the
JSON file. Then, the transformations are processed—every
transformation includes a set of attributes to specify the
designated area on the FPC, how many degrees the circuit is bent
and in which direction. Transformations are hereby
characterized as rectangles with coordinates 𝑥min, 𝑥max, 𝑦min and
𝑦max. Following that, the circuit geometry is sliced into sections
according to those transformation areas. Beginning at the start
line (red line in Fig. 2) with a bending angle of 0°, the algorithm
then iterates over all the nodes of the mesh between there and
the stop line of the specific transformation area. For every node
with position 𝑝 = [𝑝x, 𝑝y, 𝑝z]⊺ , the position factor 𝑡 on the
transformation length is calculated (Eq. 1). Based on the
maximum angle 𝛼max configured in the JSON file and the value
of 𝑡, the bending angle 𝛼 is calculated for 𝑝 so that the last points
on the stop line are transformed with 𝛼max (Eq. 2). Additionally,
the bending radius 𝑟 is determined by the width of the
transformation rectangle (Eq. 3). For each node, the bend is then
carried out using a coordinate transformation matrix 𝑇 to
calculate the new position 𝑝′ of the node (Eq. 4). Eq. 5 shows an
example transformation matrix 𝑇 for a bend in positive 𝑧
direction while moving in positive 𝑥 direction relative to the flat
PCB. If there are still geometries behind the stop line, those are
rotated like the last points on the stop line so they form a straight
plane tangentially to the transformed area. This is called a
residual transformation based on a transformation matrix 𝑅 as
calculated in Eq. 6. The transformed points are then calculated
just as in Eq. 4.

Figure 3 Thermal FEM simulation – flat board (top) vs. bent board (bottom)

Figure 4 Bending area (green) and start line (red) as visualized in the
application

III. DEMONSTRATOR AND RESULTS

We created a small test board containing an ESP32-H2
System-on-a-Chip (SoC) with several peripheral components to
demonstrate the workflow. These include a low dropout (LDO)
voltage converter for supplying the processor with power via
USB, a BME280 temperature/humidity sensor and a CR2032
lithium coin cell as primary power supply. By bending the circuit
board around the battery as illustrated in Fig. 2, there is no need
for a separate battery holder. The SoC is able to control the
sensor via I²C, read measurements, and transmit them through a
ZigBee network.

During the operation of the processor and the voltage
converter, heat is generated that could cause errors in the
BME280’s measurement results. Therefore, the temperature rise
caused by heat dissipation is of interest. In the flat form (Fig. 3),
the only way for the heat to reach the sensor is via the copper
traces. As a significant amount of heat will be conducted by the
battery when the FPC is bent around it, it is best to do a
simulation, as the temperature at the sensor is expected to
increase.

The processing of the bent geometry was then done in
SALOME [9], which involves some manual adjustments. After
defining physical groups, which later represent boundaries in the
FEM simulation, the final mesh is generated with gmsh [12].

For this demonstration, the FEM simulation was set up in
Elmer [10] with the pads under the LDO regulator and the SoC
acting as heat sources with a constant temperature of 30 °C and
25 °C, respectively. The substrate was configured to emit heat
with a thermal coefficient of 100 Wm⁻² K⁻¹ to the surrounding
air with a temperature of 20 °C. The .vtu file generated by the
Elmer solver is then fed into ParaView [13] to plot the
temperatures on the mesh. It turned out that the temperature at
the BME280 sensor was 20.26 °C in the flat configuration
(Fig. 4 top). In the bent configuration with the battery as an
additional thermal bridge (see Fig. 4 bottom), the temperature
increased by nearly 2 K to 22.2 °C. The circular pad area heated
by the battery (Fig. 4 left) can clearly be identified as the cause
for the additional heating of the sensor.

IV. CONCLUSION

In this paper, we presented a comprehensive workflow for
designing flexible printed circuits (FPCs) using exclusively
open-source tools. Our tool transforms the 2D layout of a circuit
board into a detailed flat 3D model that can then be bent. The
result is visualized, creating a precise representation that allows
for accurate measurement of dimensions, radii, and distances
between points.

By rendering these models in 3D, users gain a clearer insight
into the complex spatial configuration of flexible circuits,
bridging the gap to mechanical CAD programs for further
development of casings or mechanical components. The
generated geometries facilitate the creation of accurate models
for simulating crucial electrical, thermal, and mechanical
parameters. This advancement empowers small companies and
open-source projects to design, visualize, and simulate complex
flexible circuits, thereby enhancing design accuracy and
fostering innovation in FPC development.

REFERENCES
[1] C. Fu, R. Brown, and C. Ume, “Temperature-dependent material

characterizations for thin epoxy FR-4/E-Glass woven laminate,” in Proc.
of IEEE 43rd Electronic Components and Technology Conference (ECTC
’93), 1993, pp. 560–562. [Online].
Available: https://doi.org/10.1109/ECTC.1993.346789

[2] M. Wagih, Y. Wei, and S. Beeby, “Flexible 2.4 GHz Node for Body Area
Networks With a Compact High-Gain Planar Antenna,” IEEE Antennas
and Wireless Propagation Letters, vol. 18, no. 1, pp. 49–53, 2019.
[Online]. Available: https://doi.org/10.1109/LAWP.2018.2880490

[3] “KiCad,” 2024. [Online]. Available: https://www.kicad.org/

[4] S. Fießer and U. Schwalbe, “Analyzing and optimizing the switching
behavior of power electronics by automated pcb parasitics extraction of
the critical path,” in Proc. of 23rd European Conference on Power
Electronics and Applications (EPE’21 ECCE Europe), 2021, pp. P.1–P.8.
[Online].
Available:
https://doi.org/10.23919/EPE21ECCEEurope50061.2021.9570455

[5] R. Szewczyk, A. Ostaszewska-Liz˙ewska, and P. Ra˚back, “Modelling
the Fluxgate Sensors with Magnetic Field Concentrators,” Acta Physica
Polonica A, vol. 137, pp. 700–702, May 2020. [Online].
Available: https://doi.org/10.12693/APhysPolA.137.700

[6] N. Arnold, “IFTE-EDA/FTL: Fold the line – FPC geometry
transformation and data extraction for visualization & simulation.”
[Online]. Available: https://github.com/IFTE-EDA/ftl

[7] Z. Lei, “Realthunder/FCAD_PCB: Freecad scripts for PCB CAD/CAM,”
2024. [Online]. Available: https://github.com/realthunder/fcad_pcb

[8] “Your own 3d parametric modeler,” 2024. [Online]. Available:
https://www.freecad.org/?lang=en

[9] “SALOME Platform,” 2024. [Online].
Available: https://www. salome-platform.org/

[10] “Elmer FEM.” [Online]. Available: https://www.elmerfem.org/

[11] T. Liebig. openEMS - Open Electromagnetic Field Solver. General and
Theoretical Electrical Engineering (ATE), University of Duisburg-Essen.
[Online]. Available: https://www.openEMS.de

[12] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh
generator with built-in pre- and post-processing facilities,” International
Journal for Numerical Methods in Engineering, vol. 79, pp. 1309–1331,

Sep. 2009. [Online]. Available: https://doi.org/10.1002/nme.2579

[13] Kitware, “ParaView,” 2024. [Online].
Available: https://www.paraview.org/

