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Abstract—Predicting the properties of flexible printed circuits 
(FPCs) before production is a significant challenge in their 
development. Traditional design flows model FPCs in a flat state, 
yet simulations of the actual bent shape of the circuits are more 
effective in forecasting their behavior in real-world applications. 
Currently, only proprietary tools are available for simulating 
these 3D geometries, with no open-source alternatives. This paper 
introduces a novel open-source software tool that bridges this gap 
by transforming two-dimensional layout data from KiCad files 
into three-dimensional bent geometries. This transformation is 
achieved through segmentation and meshing techniques, enabling 
accurate verification of circuit parameters via simulation. The 
software facilitates these simulations by generating the necessary 
input files, thus supporting a comprehensive open-source design 
and verification workflow. This work not only enhances the 
accessibility of FPC design and simulation but also underscores 
the broader applicability of open-source solutions for printed 
circuit board design. 
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I. INTRODUCTION 

Flexible printed circuits (FPCs) provide significant 
advantages over traditional rigid printed circuit boards (PCBs). 
Particularly beneficial in projects with complex geometries or 
limited space, FPCs utilize a bendable substrate (often 
polyimide (PI)), in contrast to the fiberglass-reinforced epoxy 
(FR4) [1] used in rigid PCBs. The inherent flexibility of FPCs 
enables circuits that can adapt to curved surfaces or be folded to 
reduce their spatial footprint. Additionally, the material 
properties of PI are advantageous in high-frequency (HF) 
applications [2]. Despite these benefits, designing FPCs poses 
substantial challenges. Conventional layout designs are 
executed in 2D, yet the final form of these circuits is inherently 
three-dimensional, introducing complexities in visualizing and 
planning the final product. Effective design processes must 
preemptively address potential issues, such as component 
interference, and unwanted electrical or thermal interactions, 
such as crosstalk. By ensuring precise placement of components 
in the design phase, it is possible to facilitate assembly without 
unforeseen violations, and proper functionality in the finished 
3D structure. 

To date, the respective software is only available under 
proprietary licenses from companies like Altium and Cadence. 
For smaller companies and projects, the licensing cost is often 
too high, raising the demand for a free or open-source 
alternative. While existing open-source PCB design tools like 
KiCad [3] are widely used to design rigid PCBs, they lack 
capabilities to visualize or simulate FPCs in their bent 

configurations. Although simulations of rigid PCBs and flat 
FPCs can be performed with available open-source 
tools [4], [5], there are no known open-source tools for 
visualizing or simulating FPCs in their final, three-dimensional 
form. 

In this paper, we present a workflow that exclusively utilizes 
open-source software to visualize and simulate flexible circuits. 
We have developed an application that allows users to bend 
circuits designed in the open-source program KiCad by applying 
specific bending parameters, filling the gap between FPC design 
and simulation. To illustrate the capabilities of this workflow, 
we use the design of the example circuit in Section III to 
demonstrate the transformation to its bent configuration and the 
thermal simulation of the generated geometry. 

 
Figure 1   Common simulation workflow with our contribution to transform 
geometries highlighted 

The source code of our program is licensed as open-source 
software and available on GitHub [6] for anyone to use and 
modify. 

II. METHOD 

In this section, we first describe our workflow for designing 
an FPC as shown in Fig. 1 (Sec. II-A), and then explain the 
detailed implementation of our new program (Sec. II-B). 

A. Workflow 

Our workflow begins with the design of the circuit as a flat 
PCB in KiCad [3]. Extra space needs to be reserved for the 
bending areas, as visible in the middle of the PCB shown in 
Fig. 2. A KiCad plugin was created to enable users to draw the 
bending areas and adjust their parameters (e.g. bending angle, 



 
 

direction). This information is then exported as a JSON file 
together with the paths to the 3D (STL) files of the individual 
layers.  

The KiCad layout file (.kicad_pcb) is used to generate the 
STL files of the substrate and the copper traces by using the 
macro fcad_pcb [7] in FreeCAD [8]. This macro extrudes the 
2D polygons representing the copper routes into a 3D stack of 
copper wires and substrate layers. Starting from there, the 3D 
geometries are meshed and then exported as STL files.  

We developed an open-source program to bend the 3D 
circuit geometry. The 3D meshes generated from kicad_pcb are 
used as a data source for the transformation algorithm explained 
in Sec. II-B. Before the transformation, the area to be bent is 
highlighted, as shown in Fig. 2. After confirmation, the 
algorithm is executed, the bent circuit board is visualized and 
can be exported to FreeCAD in order to populate parts.  

The output of our program can be used for simulations. For 
this, the bent geometries can be further processed in 
SALOME [9] for advanced mesh operations and, for example, 
imported into Elmer [10] to enable Finite Element Method 
(FEM) simulations of the transformed circuit. Another option is 
to use straight geometries in OpenEMS [11] to execute Finite 
Difference Time Domain (FDTD) simulations, as the FDTD 
method is not suited for bent geometries. 

 
Figure 2   FPC rendered in KiCad’s 3D viewer 
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B. Implementation 

In our Python program, the first step is to parse and import the 
meshing information for copper and substrate layers from the 
JSON file. Then, the transformations are processed—every 
transformation includes a set of attributes to specify the 
designated area on the FPC, how many degrees the circuit is bent 
and in which direction. Transformations are hereby 
characterized as rectangles with coordinates 𝑥min, 𝑥max, 𝑦min and 
𝑦max. Following that, the circuit geometry is sliced into sections 
according to those transformation areas. Beginning at the start 
line (red line in Fig. 2) with a bending angle of 0°, the algorithm 
then iterates over all the nodes of the mesh between there and 
the stop line of the specific transformation area. For every node 
with position 𝑝 = [𝑝x, 𝑝y, 𝑝z]⊺ , the position factor 𝑡 on the 
transformation length is calculated (Eq. 1). Based on the 
maximum angle 𝛼max configured in the JSON file and the value 
of 𝑡, the bending angle 𝛼 is calculated for 𝑝 so that the last points 
on the stop line are transformed with 𝛼max (Eq. 2). Additionally, 
the bending radius 𝑟 is determined by the width of the 
transformation rectangle (Eq. 3). For each node, the bend is then 
carried out using a coordinate transformation matrix 𝑇 to 
calculate the new position 𝑝′ of the node (Eq. 4). Eq. 5 shows an 
example transformation matrix 𝑇 for a bend in positive 𝑧 
direction while moving in positive 𝑥 direction relative to the flat 
PCB. If there are still geometries behind the stop line, those are 
rotated like the last points on the stop line so they form a straight 
plane tangentially to the transformed area. This is called a 
residual transformation based on a transformation matrix 𝑅 as 
calculated in Eq. 6. The transformed points are then calculated 
just as in Eq. 4. 

 

 
Figure 3   Thermal FEM simulation – flat board (top) vs. bent board (bottom) 

 



 
 

 
Figure 4   Bending area (green) and start line (red) as visualized in the 
application 

III. DEMONSTRATOR AND RESULTS 

We created a small test board containing an ESP32-H2 
System-on-a-Chip (SoC) with several peripheral components to 
demonstrate the workflow. These include a low dropout (LDO) 
voltage converter for supplying the processor with power via 
USB, a BME280 temperature/humidity sensor and a CR2032 
lithium coin cell as primary power supply. By bending the circuit 
board around the battery as illustrated in Fig. 2, there is no need 
for a separate battery holder. The SoC is able to control the 
sensor via I²C, read measurements, and transmit them through a 
ZigBee network. 

During the operation of the processor and the voltage 
converter, heat is generated that could cause errors in the 
BME280’s measurement results. Therefore, the temperature rise 
caused by heat dissipation is of interest. In the flat form (Fig. 3), 
the only way for the heat to reach the sensor is via the copper 
traces. As a significant amount of heat will be conducted by the 
battery when the FPC is bent around it, it is best to do a 
simulation, as the temperature at the sensor is expected to 
increase. 

The processing of the bent geometry was then done in 
SALOME [9], which involves some manual adjustments. After 
defining physical groups, which later represent boundaries in the 
FEM simulation, the final mesh is generated with gmsh [12].  

For this demonstration, the FEM simulation was set up in 
Elmer [10] with the pads under the LDO regulator and the SoC 
acting as heat sources with a constant temperature of 30 °C and 
25 °C, respectively. The substrate was configured to emit heat 
with a thermal coefficient of 100 Wm⁻² K⁻¹ to the surrounding 
air with a temperature of 20 °C. The .vtu file generated by the 
Elmer solver is then fed into ParaView [13] to plot the 
temperatures on the mesh. It turned out that the temperature at 
the BME280 sensor was 20.26 °C in the flat configuration 
(Fig. 4 top). In the bent configuration with the battery as an 
additional thermal bridge (see Fig. 4 bottom), the temperature 
increased by nearly 2 K to 22.2 °C. The circular pad area heated 
by the battery (Fig. 4 left) can clearly be identified as the cause 
for the additional heating of the sensor. 

 

 

IV. CONCLUSION 

In this paper, we presented a comprehensive workflow for 
designing flexible printed circuits (FPCs) using exclusively 
open-source tools. Our tool transforms the 2D layout of a circuit 
board into a detailed flat 3D model that can then be bent. The 
result is visualized, creating a precise representation that allows 
for accurate measurement of dimensions, radii, and distances 
between points. 

By rendering these models in 3D, users gain a clearer insight 
into the complex spatial configuration of flexible circuits, 
bridging the gap to mechanical CAD programs for further 
development of casings or mechanical components. The 
generated geometries facilitate the creation of accurate models 
for simulating crucial electrical, thermal, and mechanical 
parameters. This advancement empowers small companies and 
open-source projects to design, visualize, and simulate complex 
flexible circuits, thereby enhancing design accuracy and 
fostering innovation in FPC development. 
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