
194 5 Steps in Physical Design: From Netlist Generation …

5.4 Verification

When physical design is complete, the layout must be fully verified. This verification
step validates functional correctness and design manufacturability. Effectively, the
main objective of verification is to ensure the correct functionality of the design and
to minimize the risk of problems occurring during manufacturing.

Designing an electronic system is both challenging and time-consuming. Issues
can be encountered during the process that jeopardize or completely scupper the
design. Research and practical experience have shown that if a fault is left undis-
covered it becomes far more costly to correct at a later stage. In fact, the cost of
correcting a fault increases by an order of magnitude for every layout-processing
step in which it remains undiscovered. The immediate goal is therefore to discover
faults as early as possible in the flow. This requires multiple verification steps.

The product cannot be tested or validated during the design process as it does
not yet exist at this stage. However, during design reliable and informative criteria
need to be specified for checks that will occur in subsequent stages. These criteria
can be derived from the technological and functional constraints; we describe this
operation in Sect. 5.4.1, and then elaborate on the individual verification techniques
in subsequent sections.

As visualized in Fig. 5.31, any comprehensive design verification process
includes the following checks: formal verification (Sect. 5.4.2), functional verifica-
tion (Sect. 5.4.3), timing verification (Sect. 5.4.4), and physical verification. Physical
verification can be further split into geometric verification (Sect. 5.4.5) and verifi-
cation based on extraction and netlist comparison (LVS, Sect. 5.4.6). As a physical

Fig. 5.31 Verification steps
(right) that are discussed in
Sects. 5.4.2–5.4.6

Physical Design

Schema c DesignHDL Design

Physical Veri ca on

Layout Post Processing

Netlist

Formal Verifica on

Func onal Verifica on
(Simula on)

Timing Verifica on

Geometric Verifica on
(DRC, ERC)Layout data

Mask data

Func onal/Logic Design
Circuit Design

Extrac on, LVS

Jens Lienig, Juergen Scheible
Fundamentals of Layout Design for Electronic Circuits
ISBN 978-3-030-39283-3, Springer 2020

5.4 Verification 195

designer needs to know which verification steps have been applied prior to layout gen-
eration, we cover these “early-on” verifications (formal, functional and timing) first,
before presenting in detail physical verification procedures (DRC, ERC, Extraction,
LVS).

5.4.1 Fundamentals

As we know, electronic systems are designed in many steps due to their high com-
plexity. Each design step produces a new intermediate result that brings us ever
closer to the final design. These intermediate results must be checked for violations
of the specified technological and functional constraints. The functional constraints
are derived from the project, including some that are defined at project kick-off, one
example being the signal-to-noise ratio of a signal defined in the specification. Others
could be defined during the design, an example here being the maximum permissi-
ble IR drop in a line. The technological constraints are specified by the fab (aka the
fabricator); they are based on the manufacturing limits of the technology being used.

We noted in Chap. 2 (Sect. 2.3.4) that it is critical that the result of an IC design,
i.e., the finished layout, is correct, because if an IC with inherent design flaws is
fabricated, serious financial losses would be incurred by the defective chip. Violations
are therefore checked for with advanced computer-based tools. To enable this to
happen, the relevant constraints must be converted to a format that can be used by
these verification tools.

The constraints are converted in a two-stage mapping process. Figure 5.32 illus-
trates this for all constraints. Constraints based on physics/reality are converted in
the first mapping to formal rules or standards, which are formulated in a readable
format as text, for example. This formal description of the constraints is a meta for-
mat (middle column in Fig. 5.32). These meta descriptions are then converted to the
data formats needed for the verification tools (right column in Fig. 5.32).

Following the second mapping, the constraints are available for the verification
tools as a technology file, for example (right-hand column in Fig. 5.32). A verification
tool, such as a DRC tool, can then check the intermediate result of a design step
automatically for compliance with preset criteria. If a violation is found during the
check, it is labeled as an error.

Figure 5.32 shows clearly the significance of the different categories of constraints.
(We introduced these categories in Sect. 4.5.2.) The technological and functional
constraints are converted into the physical design domain (right column in Fig. 5.32)
to enable an automatic check. Compliance with these checks determines whether a
chip or a PCB can be manufactured, and whether or not it is fit for purpose. The
purpose of the remaining constraint category, the design-methodology constraints,
is to enable this mapping and thus automatic processing.

196 5 Steps in Physical Design: From Netlist Generation …

Semi-conductor
process

Geometrical
design rules DRC

Circuit
func on

Netlist LVS

Physics/Reality

Technological
constraints

Func onal
constraints

Physical designDescrip on
(Meta level)

1st abstrac on
(Formaliza on)

Assembly rulesPackaging
process

Manual /
Checks

Constraints
(Partly formalized)

Electrical
design rules

Circuit
reliability

Manual /
Checks

Manual /
ERC

Standardiza on
Reduc on of the
degrees of freedom

2nd abstrac on
(Formaliza on)

Design-
methodology
(geometry)
constraints

(No dependency)

Fig. 5.32 Making technological and functional constraints accessible to verification tools requires
two conversions. The first conversion results in formal rules (middle column), which are then con-
verted into the data formats of the respective verification tool (right column). Design-methodology
constraints provide a feedback from the second to the first abstraction; they also limit the degrees
of freedom within physical design

Let us consider an example: DRC tools need the design rules written in a specific
format. Complex design rules can be described in this format by routines comprising
numerous commands (examples are given in Chap. 3, Sect. 3.4.3). Although the
syntax and semantics of these languages are very powerful, they are still limited.
Hence, the rules need to be described in such a manner in the meta level that they
enable the second mapping in the physical design without any information loss.

Design-methodology constraints are restrictions that must be adhered to when the
design rules of the meta level are drawn up so that these rules can be programmed sub-
sequently. Hence, the design-methodology constraints in Fig. 5.32 represent a feed-
back from the second mapping to the first. Within physical design (i.e., the result of the
second mapping in Fig. 5.32, that is, the column on the right), design-methodology
constraints promote standardization by restricting the degrees of freedom.

Design engineers should always remember that both mappings are abstractions, as
the real constraints (shown on the left in Fig. 5.32) are formalized by these mappings.
This means that a formal constraint, such as a physical design constraint, is not
equivalent to the real requirement in the technology or in the physical design solution.
We will illustrate this with an example of a technological constraint.

It may not always be possible to exactly model a technological constraint by a
design rule because of the complexity of modern technologies. In these cases, a small
margin of safety is introduced into the design rule w.r.t. the real requirement. This
causes layout results to fail the DRC even though they have not violated the real
technological constraint. This type of error is called a dummy error or false error.

5.4 Verification 197

The impact of dummy errors can be waived when interpreting DRC results, and
the layout structure is left unchanged. However, the design engineer must be very
experienced and understand exactly the underlying technology to properly handle
these cases.

Geometric rules within the physical design domain (right column in Fig. 5.32)
are typically conservatively formulated to ensure that the real requirements (i.e., the
original technological constraints) are met with certainty. Technological constraints
therefore tend to be met with a safety factor. In fact, manufacturability is typically one
hundred percent assured with a perfect DRC result. Contrast this with the situation
for functional constraints, where they can only be modelled in part in modern design
environments. As such, they cannot be completely checked.

This is an important observation as it is the reason for further checks, such as
simulations, and also one reason why a valid verification (“Has the circuit been
correctly designed?”) can nevertheless result in an invalid validation (“Has the correct
circuit been designed?”) (Chap. 4, Sect. 4.4, cf. Fig. 4.18).

Before we discuss different verification methods in physical design in the follow-
ing subsections in detail, we first classify them. Table 5.1 presents an overview of

Table 5.1 Different options for verifying an electronic circuit as presented in the following
subsections. For the sake of completeness, we also include testing, i.e., to validate a circuit design
from a customer perspective

Check What is checked? How is it checked? Method

Model check Logical characteristic
(Assumption is true?)

Mathematical models Formal verification

Equivalence check Logical equivalence
of two descriptions

Mathematical models Formal verification

Simulation Circuit behavior
versus specification

Virtual experiment
(stimuli and output)

Functional
verification

DRC (OPC, RET) Layout versus
technological
constraints
(manufacturability)

Geometrical design
rules

Geometric
verification

LVS Layout versus
schematic

Netlist extraction
from layout, rule
based

Geometric
verification

PEX (plus
simulation)

Impact of parasitics
on circuit behavior

Parameter extraction
from layout, rule
based; followed by
simulation

Geometric and
functional
verification

ERC Layout versus
electric process
boundaries
(reliability)

Connectivity
extraction from
layout, rule based

Geometric
verification

Testing Compliance for
practical usage

Real experiment,
customer checking

Validation

198 5 Steps in Physical Design: From Netlist Generation …

Geometrical/physical view

Structural viewBehavioral view

Macro blocks
Func�onal blocks

Register, ALUs
Gates, flip-flops

Transistors

Specifica�on
Algorithms

Module descrip�on
Boolean equa�ons

Transfer func�ons

Cells
Polygons

Behavioral models

Testbench

Geometric
verifica�on:

DRC, OPC, RET

Formal verifica�on:
Model check

Geometric
verifica�on:

LVS

Func�onal
verifica�on:
Simula�on

Technology file

Electrical verifica�on:
ERC

Formal verifica�on:
Equivalence Check

Start of design flow:
Specifica�on

Goal of design flow:
Graphic data for
mask fabrica�on

Geometric-electrical
verifica�on:

PEX + Simula�on

Floorplan, clusters
Physical par��ons

Fig. 5.33 Illustration of the various verification methodologies (cf. Table 5.1) using the Y-chart
(right), where the top-down design style is visualized (left)

the various options available for verifying a circuit. Table 5.1 also includes a method
that is beyond the scope of this book, testing, which validates a circuit design with
regard to a customer’s requests (see Fig. 4.18 in Chap. 4). Please also note that we
omit assertion-based verification (ABV) where designers use assertions to capture
specific design intent. This verification methodology can be addressed nowadays
by formal verification techniques (model checking) as well as traditional simulation
strategies.

Figure 5.33 relates the verification methodologies to the Y-chart (Chap. 4,
Sect. 4.2.2).

5.4.2 Formal Verification

The goal of formal verification, also called formal functional verification, is to prove
the correctness of a circuit implementation with respect to its specification. More
specifically, it shows the correctness of an intended circuit regarding a specific formal
specification or property, using formal mathematical methods. The best known formal
verification methods are “model checking”—often called “property checking” in
commercial tools—and “equivalence checking”.

Model checking verifies a certain property of a design or an implementation. It
proves (or disproves) that a design under verification, often described in HDL code,
satisfies its specifications, i.e., that it behaves as expected in every way (and only
as expected). Both the design model under verification and the specification are
formulated using precise mathematical language. Essentially, a given structure must
satisfy a given logical formula in this check.

Equivalence checking, on the other hand, compares two circuit descriptions.
It exhaustively checks that two design representations, such as HDL code and a

5.4 Verification 199

derived gate level netlist, provide the same functional behavior. There are different
approaches to executing this type of proof. For example, both circuit descriptions
can be represented by a normalized notation, such as a netlist syntax, to simplify
the comparison. Equivalence checking is the primary methodology for synthesis
verification.

Formal verification delivers either a successful verification result or demonstrates
(i) that the circuit description does not meet a desired property (model checking), or
(ii) that two circuit descriptions are not the same (equivalence checking).

Formal verification is part of the early design steps, such as HDL-based netlist
generation, that we covered in Sect. 5.1. As the layout designer does not deal directly
with this pre-layout verification method, we will not explore it further here; more
information on formal verification can be found in the literature: for example, [13]
is a well-written and easy-to-grasp introduction to the topic.

5.4.3 Functional Verification: Simulation

A circuit’s functional correctness can be verified by simulation. Here, typical input
patterns, so-called stimuli, are used to check whether the simulated outputs are iden-
tical to the intended outputs. Alternatively, the stimuli can be applied to the design
behavioral description and to the final gate description. In this case, their responses
are compared and evaluated.

Any differences in simulation results can be caused by (i) design errors or (ii)
simulation errors or inaccuracies. In both cases, further investigations are required. If,
however, the simulation results are identical with the design values, confidence in the
correctness of the design is boosted. Unfortunately, simulation can never guarantee
that a design is correct in its entirety.

Simulating a circuit’s behavior before actually building it can greatly improve
design efficiency by flagging design faults early in the flow and providing insight
into the circuit’s behavior. Almost all IC design relies heavily on simulation. The
best-known analog simulators are based on the principle of (or directly derived from)
SPICE (Simulation Program with Integrated Circuit Emphasis); digital simulators
are often using Verilog or VHDL syntax (Sect. 5.1).

Popular simulators frequently include both analog and event-driven digital simu-
lation capabilities, known as mixed-mode simulators. This means that any simulation
may contain components that are analog, event-driven (digital or sampled-data), or a
combination of both. Mixed-mode simulation is performed on three levels; (i) with
primitive digital elements that use timing models and the built-in digital logic sim-
ulator, (ii) with subcircuit models that use the actual transistor topology of the IC,
and (iii) with in-line Boolean logic expressions. An entire mixed-signal analysis can
be driven from one integrated schematic.

Simulation tools usually interface to a schematic editor, a simulation engine, and
on-screen waveform display (Fig. 5.34). These tools allow a designer to quickly

200 5 Steps in Physical Design: From Netlist Generation …

S muli

Output

Input 1

Input 2

Input 1

Input 2

Output

Fig. 5.34 Example of a five-gate circuit with XOR functionality and a (correct) waveform display

modify a simulated circuit and see what effect the changes have on the output.
Simulators also typically contain extensive model and device libraries.

When verifying a circuit by simulation, we should always keep in mind that
simulation-based verification requires a long execution time, especially for large
designs. Worse still, there is usually a lack of a comprehensive set of stimuli to
validate the entire design. It is impossible to consider all possible input patterns and
circuit states even for fast simulators and small circuits. (For example, the exhaustive
simulation of a multiplier for two 32-bit binary numbers would require 264 input
patterns, which would take 5,849 years of execution time even with a simulation
rate of 100 million multiplications per second [8].) This often forces the designer
to rely on some method of random stimuli generation, despite the requirement of
full design coverage [5]. Hence, some design errors may remain undetected due to
“wrong stimuli”.3

5.4.4 Timing Verification

The term timing verification is used to describe the process of checking whether a
digital circuit’s timing is still valid after its layout has been produced.

Critical paths in a circuit are calculated during logic synthesis; all paths are
checked for worst-case delay times caused by changing signals. The resulting critical
path defines the fastest possible clock rate at which the circuit can produce correct
output signals. The circuit’s layout must meet timing constraints, as well. Essen-
tially, the circuit must pass two timing checks: maximum delay, which is related
to setup (long-path) constraints, and minimum delay, which relates to hold (short-
path) constraints (Fig. 5.35). Setup checks characterize the performance, whereas a
non-passing hold check indicates a faulty circuit.

One approach for timing verification is dynamic timing analysis. Here, all wire
capacities and resistances are extracted from the layout and the circuit is simulated
considering these values. This method is very time consuming as many stimuli must
be considered. Restricting dynamic timing analysis to the critical path (defined during

3The so-called “Pentium FDIV bug” is an infamous example, where a well-simulated Intel processor
returned incorrect binary floating-point results when dividing a number, causing a $475 million loss
for Intel [6].

5.4 Verification 201

Fig. 5.35 Illustrating
minimum and maximum
delays resulting from the
shortest and longest paths

D
CLK

FF1

D
CLK

FF2
D
CLK

FF3

Minimum delay

Maximum delay
(Cri cal path)

logic synthesis) does not help because this path is undefined at this later stage—place
and route could have easily generated a different critical path than was calculated
during logic synthesis.

Static timing analysis (STA) has been developed as a more efficient timing veri-
fication method. It is based on the netlist extracted from the layout considering wire
capacities and resistances too. The signal delays calculated on all paths are compared
to the timing constraints defined by the designer. Specifically, STA propagates actual
arrival times (AATs) and required arrival times (RATs) to the pins for every gate
or cell. STA quickly locates timing violations, and diagnoses them by tracing out
critical paths in the circuit that are responsible for these timing failures [8]. In the
past, logic synthesis was then repeated using more restrictive timing constraints on
these critical paths; nowadays, STA produces as output an optimized netlist.

Logic gates and wires along with their respective delays are inputs for dynamic and
static timing analysis. While gate delays are specified in the timing models in a library,
wire delays are calculated using a variety of techniques. Among these techniques,
the moment-based technique is widely applied today where impulse responses from
the RLC network are analyzed by means of time-frequency transformation methods
[5]. Another moment-based interconnect delay calculation uses the first moment of
the impulse response; this is known as the Elmore delay model [4].

Any timing-related circuit simulation after layout generation requires layout-
dependent timing information for the current operating condition to be simulated.
The Standard Delay Format (SDF) is used for this timing information. The SDF
file contains interconnect delays, gate delays and timing checks that are exported
from the physical design tools into an abstracted format. Most important here are
the delays associated with the interconnections between devices and ports, i.e., the
wire-segment delays as laid out during physical design.

Timing verification also requires checking for resistive and capacitive coupling.
For example, crosstalk-induced noise occurs when signals in adjacent wires transition
between logic values—and capacitive coupling between these wires causes a charge
transfer [5]. This capacitance also has a serious impact on the adjacent wire delays. It
is therefore crucial that an accurate timing engine is available to calculate the delay
of a coupled system in post-layout timing verification.

Verbal expressions such as “the design has closed timing” are commonly used
when the design satisfies all timing constraints. More precisely, the term timing

202 5 Steps in Physical Design: From Netlist Generation …

closure denotes the process of satisfying timing constraints through layout optimiza-
tions and netlist modifications [9]. These layout optimizations include timing-driven
placement and timing-driven routing. As they are of importance for a layout designer,
let us elaborate on these two procedures with additional details.

Timing-driven placement optimizes circuit delay, either to satisfy all timing con-
straints or to achieve the highest possible clock frequency. It uses the results of STA
to identify critical nets and attempts to improve signal propagation delays through
these nets. As we introduced in Sect. 5.3.2, timing-driven placement can be catego-
rized as net-based or path-based. There are two types of net-based techniques—(i)
delay budgeting assigns upper bounds to the timing or length of individual nets, and
(ii) net weighting assigns higher priorities to critical nets during placement [9]. Path-
based placement seeks to shorten or speed up entire timing-critical paths rather than
individual nets. Although it is more accurate than net-based placement, path-based
placement does not scale to large, modern designs because the number of paths
in some circuits, such as multipliers, can grow exponentially with the number of
gates [9].

After detailed placement, clock network synthesis and post-clock network opti-
mization, the timing-driven routing phase aims to correct the remaining timing vio-
lations. It seeks to minimize one or both of (i) maximum sink delay, which is the
maximum interconnect delay from the source node to any sink in a given net, and
(ii) total wirelength, which affects the load-dependent delay of the net’s driving gate
[9]. Specific methods of timing-driven routing include generating minimum-cost,
minimum-radius trees for critical nets, and minimizing the source-to-sink delay of
critical sinks [9].

If outstanding timing violations still remain, further optimizations, such as re-
buffering, are applied.

5.4.5 Geometric Verification: DRC, ERC

The term geometric verification summarizes all checks that are executed at the fin-
ished (geometric) layout or during layout design. Most notable here are the design
rule check (DRC) and the electrical rule check (ERC).

Every chip manufacturer provides geometrical design rules (Chap. 3, Sect. 3.4) for
their technology to the chip-designing organization (cf. Fig. 4.19 in Chap. 4). They
are stored in technology file which is part of the design suite for a given technology
(process design kit, PDK). These rules are a prescription for preparing photomasks
that can be applied during IC design and which deliver a manufacturable layout. More
precisely, a design rule set specifies certain geometric and connectivity restrictions
to ensure sufficient margins to account for variability in the applied semiconductor
manufacturing process.

As discussed earlier (Chap. 3, Sect. 3.4.2 and Chap. 4, Sect. 4.5.2), geometrical
design rules can be separated into width, spacing, extension, intrusion, and enclosure
rules (Fig. 5.36, left; cf. Fig. 3.20 in Chap. 3). Another category of rules that can be

5.4 Verification 203

a

e

b2 Metal 2

Top view

Side view

Metal 1

PolyThin gate oxide

Antenna rule
(Metal to gate area)

Wire

Gate

c

b1

d

Width rule a
Spacing rules b1, b2
Extension rule c
Intrusion rule d
Enclosure rule e

Width rule a
Spacing rules b1, b2
Extension rule c
Intrusion rule d
Enclosure rule e

Fig. 5.36 Visualization of the basic DRC checks (width, spacing, extension, intrusion, and enclo-
sure rules, cf. Fig. 3.20 in Chap. 3) and of the antenna rule, which is the allowable ratio of poly or
metal area to gate area (right)

checked during geometric verification are antenna rules (Fig. 5.36, right), which we
will elaborate on below.

DRC software uses the aforementioned technology file, sometimes called a DRC
deck, during the verification process; the layout data is usually provided in the
GDSII/OASIS standard format. DRC has evolved from simple measurements and
Boolean checks to much more sophisticated rules that modify existing features, insert
new features, and check the entire design for process limitations such as layer density.
Modern design rule checkers perform complete verification checks on geometrical
design rules (Chap. 3, Sect. 3.4). The DRC tool either flags any violations directly
in the layout (Fig. 5.37) or it produces a report of design rule violations.

In some special design cases, the designer may not choose to correct any DRC
violations. Here, carefully “stretching” or waiving certain design rules is a tactic

Geometrical
design rule

viola on

Electrical rule
viola on

Fig. 5.37 The design rule check (DRC) verifies that geometrical design rules are met, exposing
a minimum distance violation (left). In contrast, the electrical rule check (ERC, right) checks for
inconsistencies in the electrical network that can be determined from the geometry and connectivity
in the circuit schematic or layout. Simply speaking, DRC does syntax analysis on the layout and
ERC performs syntax analysis on the network

204 5 Steps in Physical Design: From Netlist Generation …

used to increase performance and component density at the expense of yield. Obvi-
ously, the more conservative the design rules are, the more likely the design will be
manufactured correctly; however, performance and other objectives could suffer.

As already mentioned, antenna rules can be included in the DRC. A so-called
antenna is an interconnect, i.e., a conductor such as polysilicon or metal, that is
only partially complete during the manufacturing process. During this time, as the
layers above are not processed yet, this interconnect is temporarily not electrically
connected to silicon or grounded during the wafer processing steps (see Fig. 5.36,
right). Charge can accumulate on these (temporary dead-end) connections during
the manufacturing process to the point at which leakage currents are generated and
permanent physical damage can be caused to thin transistor gate oxide that lead to
immediate or delayed failure. This destructive phenomenon is known as the antenna
effect. Fabs normally supply antenna rules that are often expressed as an allowable
ratio of polysilicon and metal area to gate area. There is one such ratio for each
interconnect layer, which is then verified during the DRC. Sometimes a specific ratio
of the polysilicon and metal shapes’ circumference to the gate area is additionally
required because the charges are preferably collected at the antenna edges.

As design for manufacturability (DfM) has gained importance, DRC tools increas-
ingly include checks for manufacturability which go beyond the basic geometrical
design rules. This encompasses the Boolean operations and sizing functions that
we covered in Chap. 3; relations between different layers can also be included
in an automatic verification. Again, these rules are directly provided by the IC
manufacturer.

Finally, we must point out that DRC can be extremely runtime intensive as the
checks usually run on each sub-section of the circuit to minimize the number of
errors that are detected at the top level. Modern designs can have DRC runtimes of
up to a week. Most design companies require DRC to run in less than a day in order
to achieve reasonable cycle times since the DRC will likely be executed several times
prior to design completion.

So far we have hopefully conveyed to the reader that the DRC ensures that the
circuit will be manufactured correctly. It should also be clear that correct functionality
cannot be checked this way, this is left to the simulators and verifiers that manipulate
circuit behavior and that we covered earlier in Sects. 5.4.2–5.4.4.

Now let us investigate the “middle ground” between simple layout checking and
complex behavioral analysis, which is the domain of electrical rule checkers (ERC).
Electrical (design) rules make a circuit more robust, for example, by guarding it
against damage from electro-static discharge; they also improve its reliability by
reducing aging due to electrical overstress. These rules are highly dependent on
(i) the applied semiconductor technology, (ii) the circuit type, and (iii) the circuit’s
future use as a component in a large system environment. In addition, electrical rules
are often complemented by design-house specific rules and experience-based rules.

Hence, electrical rule checking is a methodology used to validate the robustness
and reliability of a design both at the schematic and layout levels against various
“electrical design rules”. It verifies the correctness of power and ground connec-
tions and checks for floating nets or pins and open and short circuits. For example,

5.4 Verification 205

by propagating the power, ground, input, and clock signals through the circuit’s
schematic and/or layout, it is possible to check for incorrect output drives, inconsis-
tencies in signal specifications, unconnected circuit elements, and much more. The
results are either visualized inside the schematic/layout editor or presented in a table
(see Fig. 5.37, right).

Electrical rules are often specified as topological structures rather than single
device/pin checks. Geometrical rules from the layout are also associated with these
topologies to ensure proper design function, performance, and yield. Some rules, such
as voltage-dependent metal spacing rules, combine both geometrical and electrical
checks.

5.4.6 Extraction and LVS

The layout versus schematic tool, often abbreviated as the LVS check, compares the
original netlist, that was used to generate the layout, with a netlist that has been
extracted from the layout produced. This proves finally that the generated layout
corresponds exactly with the original netlist. More precisely, the LVS check ensures
that circuit design and layout design match by checking for (i) the electrical connec-
tivity between device instances, (ii) the correct device instances in the netlist and the
layout, and (iii) function-critical device instance parameters. This tool and the DRC
are the most important verification tools in any IC design flow.

In order to compare both netlists, the LVS tool must first extract a netlist from
the layout data. This is performed in an extraction step. It requires a technology-
dependent extraction file containing three definitions:

• How are the layers connected, i.e., what forms a net?
• What combination of polygons and layers form a device?
• Which device polygon properties determine the electrical parameters?

Figure 5.38 visualizes the contents of such an extraction file. The contents of a
netlist can only be derived from a given layout with these three pieces of information
(layer connections, devices, device parameters), as the layout, after all, consists only
of polygons.4

The extraction algorithm is able to generate a netlist from the graphics data of the
layout based on this description. The procedure is as follows:

(1) Defining the basic devices
(a) Determine all geometrical structures that represent the basic devices.
(b) Separate the basic devices from the other layout structures.

4It is important to note why we do not take any other layout information into account, such as
library information. This would, of course, greatly simplify the task and speed up netlist recognition.
However, any error in the library would then be considered as well. The final netlist check would
then check identical netlists as both lists would be affected by the same library-based error(s). This
would render the LVS useless.

206 5 Steps in Physical Design: From Netlist Generation …

How are layers connected
and thus nets defined?

How are devices defined?
How are device parameters
determined?

Layout

Extrac on Extrac on file
(LVS rules)

Layout

Extracted netlist

Fig. 5.38 An extraction file is needed to extract the netlist from the layout polygons as this can
only be achieved by knowing which polygon configuration forms a via or a device

(2) Determine electrical nodes
Determine all geometrical structures that form electrically linked units. This is
an intra-mask operation.

(3) Generating the netlist
(a) Determine the nodes to which geometrical structures adjacent to basic

devices belong.
(b) Assign the connection types (e.g., gate and source in the case of transistors).

The contents of this netlist are then compared with a netlist derived from the
circuit schematic. The entire LVS procedure is depicted in Fig. 5.39.

The LVS compares the output data (layout) with the input data (circuit schematic)
w.r.t. the following three circuit-diagram attributes:

• Nets: Are all electrical connections in the circuit schematic—and only these
connections—in the layout as well?

• Type of devices: Are all devices from the circuit schematic—and only these
devices—present in the layout?

• Parameters of devices: Do all devices in the layout have the electrical parameters
specified in the schematic?

The result of the LVS is a report file (see Fig. 5.39) that contains the number and
types of devices as well as nodes in the original netlist (from the schematic) and
the netlist that was extracted from the layout. This file also lists all non-matching
components in both netlists. It is up to the designer to investigate these issues further,
as these comparison errors or warnings can be serious faults or simply unrecognizable
features flagged by the extraction tool.

One of the major issues with LVS verification is the repeated iterations of design
checking required to find and remove these non-matching components between both
netlists [5]. As this can be very time consuming, hierarchical verification features
(rather than a flat comparison) should be used. Here, memory blocks and other

5.4 Verification 207

Layout

Iden cal?
Original
netlist

Extracted
netlist

LayoutSchema c

Report

Extrac on Extrac on file
(LVS rules)

How are nets defined?
How are devices defined?
How are device parameters
determined?

Fig. 5.39 The LVS methodology is based on a netlist extraction from the layout. This netlist is
compared with the original netlist that was used to generate the layout

intellectual-property (IP) elements are compared in a hierarchical manner, while other
design elements, such as analog blocks and macro cells, maintain a flat representation
[5]. Consequently, verification (debugging) time can be drastically reduced.

So far we have seen how the extraction tool generates a netlist from a lay-
out. Extraction tools also feature parasitic extraction (PEX). Here, the parasitic
effects in the interconnects are calculated. The parasitics in question are: (i) parasitic
capacitances, (ii) parasitic resistances, and (iii) parasitic inductances.5

Parasitic extraction is required in order to create a more accurate analog circuit
model. Based on device models and PEX results, detailed simulations can emulate
actual digital and analog circuit responses. Another factor in the rise of interest
in parasitics is the importance of wiring capacity in advanced technology nodes:
interconnect resistances and capacitances started making a significant impact on
circuit performance below the 0.5-μm technology node. Interconnect parasitics cause
signal delays, signal noise, and IR drops—all important issues affecting circuit timing
and performance especially of analog circuits. In summary, timing analysis, power
analysis, circuit simulation, and signal integrity analysis rely on parasitic extraction.

Parasitic extraction methodologies can be broadly divided into (i) field solvers,
which provide physically accurate solutions, and (ii) approximate solutions with
pattern matching techniques. Since field solvers can only be applied to small prob-
lem instances, pattern matching techniques are the only feasible approach to extract
parasitics for complete modern IC designs.

5Additional parasitic coupling effects are caused by the chip substrate, which is common to all
devices. However, these effects are not considered in all simulation tools.

208 5 Steps in Physical Design: From Netlist Generation …

The extraction tool can also be used for antenna checks (Sect. 5.4.5). Here, the
gate area and the area of the conductor(s) are extracted, and their ratio is calculated
and compared with a reference value.

Finally, the extraction tool is also required for specific ERC functions (Sect. 5.4.5).
An example is pin-to-pin checks within the ERC where a specific resistance value
should not be exceeded in order to meet ESD requirements.

