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As indicated in Fig. 3.1, the layout data are the result of physical design. These data 
are used not only to store a design result and to prepare this result for the fab; rather, 
a layout engineer works continuously with the layout data throughout the design 
process. Hence, we next look more closely at the structure of this data and the key 
graphics operations that the layout engineer may apply to such data.

3.2.1 Structure of Layout Data

We have already explored several of the most important aspects of the layout data in 
Chap. 1 (Sect. 1.3). We have seen that chip layout data are comprised only of graphical 
data, and that these graphics contain all the information necessary to produce masks. 
The same is true for PCB layout data, where the layout is described by polygon 
coordinates, accompanied by data containing diameters and positions for drilling the 
via holes and data for positioning the devices.

In general, a graphic can be represented as a raster or vector image. While raster 
graphics are bitmaps, i.e., a grid of individual pixels that collectively compose an 
image, vector images are mathematical calculations from one point to another that 
form lines and shapes.

Electronic layout data are saved only as vector images and processed as such. 
There are several reasons for this: (i) the data structure of vector graphics suits 
layout representations (“polygons”) very well; (ii) they do not need much memory 
as compared to raster images; (iii) they can be processed more quickly and easily 
due to the information they contain; and (iv) they can be reshaped without loss of 
accuracy. The only disadvantage of the vector data structure is that it must be 
converted to raster data for presentation on computer screens. This is not a problem 
nowadays as state-of-the-art design environments are readily available with very 
efficient algorithms and high-performance hardware.

Layers
Graphics elements in layout data, for example the lateral structure of a doped region 
or an interconnect, are called shapes. Each shape is assigned to a unique layer. This 
layer association is an elemental attribute of every shape that enables it to be assigned 
to masks. It also forms the basis for graphical linking operations, as we shall see.

There is one important point we would like to make clear at this stage. When 
we talk about “layers” in the context of layout data, we are referring only to the
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above attribute in connection with the data structure. Such a layer often corresponds
directly with a counterpart in the fabrication process. This counterpart could be a
doped region in an “Nwell” layer, or “Metal1” for a metallic layer deposited on a
wafer. This does not always have to be the case, however. Layout data also contain
layers not directly associated with anything on a wafer, as we shall see (Sect. 3.3.4).
The opposite can also be true: for example, the gate oxide layer on silicon is not
modeled as a layer in the layout data.

We differentiate between the two types of “layers”, as follows: we call layers used
in the data structure as drawn layers and layers used in the fabrication process as
fabricated layers. We shall only use this extended terminology where extra clarity is
needed, i.e., in cases where the risk of misunderstanding is high if it is not used. In all
other cases, and for the sake of simplicity, we will use the term “layers”. Accordingly,
all layers referred to in this chapter are “drawn layers” in the layout.

Shapes
The shapes in the layout data are always polygons. A polygon is a two-dimensional,
continuous graphics element bounded by straight edges. This type of shape can be
efficiently stored in the vector data structure as a list of successive corner coordinates.
The resulting closed polyline determines the polygon; whether the polygon is to the
left or right of the polyline must be defined, nevertheless. This varies from tool to
tool. In some tools, the first coordinate in the list is appended at the end of the list,
thus terminating the list.

Figure 3.6a shows an example of a general polygon with seven corners. Its coor-
dinates are designated by Ci comprising two numerical values (xi, yi). By defining
the smallest permissible grid (often called “manufacturing grid”, “working grid”,
or simply “grid”), integer values, i.e., whole numbers, can be used for the (xi, yi)
coordinates. Computer memory can thus be saved and the accuracy of the model is
well-defined.

Donuts. Polygons with holes (also called donuts) can be modeled with this data
structure. For efficiency in processing, this approach requires “dual” edge sequences
in the data structure that “run” in two directions for this section. These superimposed
edge pieces do not form a real polygon edge. An example is shown in Fig. 3.6b. The
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Fig. 3.6 Different shapes in a layout data structure, such as a general polygon (a), a polygon with a
hole (“donut”, b), a polygon that approximates round boundaries (“conics”, c), a rectangle polygon
(d) and a path polygon (e)
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path (C8–C9) lies on the path (C4–C5) in this example. The coordinates C4 and C9

do not constitute real corners.

Conics. Graphics elements with round boundaries (some tool providers refer to these
as conics in this context) cannot be precisely represented by vector images based on
polygons. Round boundaries are always approximated by many straight-edge pieces;
the level of approximation varies from tool to tool. For example, the number of edge
pieces for a circle can be defined as a parameter. A circle approximated by a polygon
with eight corners is shown in Fig. 3.6c.

Aside from general polygons, there are two other custom shapes: the rectangle and
the so-called path. They are special cases of polygons, which can be more efficiently
modeled in the data structure due to their special properties. Given that rectangles
and paths are by far the most common graphics elements in a typical layout, this
advantage is fully utilized in layout representations.

Rectangles. A rectangle is a polygon with four sides and four right angles. If the
sides of the rectangle are parallel to the axes of the Cartesian coordinate system used
for the design (which is almost always the case), a rectangle can be modeled with
only the coordinates of two diagonally opposed corners (Fig. 3.6d). The data volume
can thus be almost halved. This efficient data structure matches the way a rectangle is
created in the graphics editor, that is, by the digitization of these two opposing-corner
coordinates.

Paths. Paths are polylines to which a specific width w is assigned. These shapes
are typically employed for the fabrication of interconnects to provide the electrical
current with a continuous, constant interconnect cross-sectional area. The center line
of the interconnect is digitized in the editor and the required path width is set as
a parameter. The digitized coordinates, which in the example in Fig. 3.6e are the
coordinates C1 to C4, are stored in the data structure along with the path width w.
The data volume can thus be approximately halved compared to standard polygons.
Paths stored in this way are also easier to modify.

In addition to the path shape in Fig. 3.6e, there are other non-standard shapes
whose appearances can be manipulated to meet unorthodox technology constraints. A
typical example is the expansion of the thickness with diagonal path segments (some
tool providers call these paths segments “padded paths”). This thickness expansion
enables the corners of the diagonal path produced by the polygon to lie on the
grid. This is a means of preventing rounding errors from occurring when the mask
features are produced. The beginning and end of paths with non-standard shapes
can be automatically extended. Given that these non-standard path features are also
tool-dependent, we shall not dwell further on them here; instead, we recommend the
reader to refer to the relevant tool manual.

Edges. It is important to note that modern design tools manipulate shapes as well
as parts of shapes. Take, for example, the individual edge segments (Ci, Ci+1): these
are addressable data items for these tools. This means that individual edges and path
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segments can be selected in a layout editor, as well. Useful graphics operations can
be performed with these options during layout processing, as we shall explain in
Sect. 3.2.3.

Hierarchical Organization of Layout Data
As indicated earlier, layout data are organized in a hierarchy, and this hierarchical
organization mirrors the corresponding structural description. Each function block
in the structural description—and thus each schematic—is a self-contained subset
of the complete layout, which is also called a layout block.

The hierarchical layout structure is illustrated as a tree in Fig. 3.7. A layout
block (B) can contain components and other layout blocks. The components are
described generally in the layout as cells (C). Basic components are also called
devices, whose internal circuitry is typically designed in the front-end-of-line (FEOL)
in the technology (FEOL is discussed in Chap. 1, Sect. 1.1.3, and demonstrated in
Chap. 2, Sect. 2.9.3). The cell shapes (c) therefore are assigned to the layers in the
FEOL in the case of devices.

Furthermore, a layout block contains the shapes that form the interconnect layouts
produced in the back-end-of-line (BEOL) during fabrication (BEOL is introduced in
Chap. 1, Sect. 1.1.3, and described in detail in Chap. 2, Sect. 2.8). These shapes are
labeled “net shapes” (n) in Fig. 3.7. In contrast to cells and blocks, whose structures
are to be found at lower levels in the tree, net shapes are always part of a block. They
are said to be “flat” data within a block.

This tree structure of an entire layout exists in both the layout engineer’s con-
ception of the design as well as the organization of the design data in the design
environment. Here, every layout block (and often every circuit schematic) is typi-
cally stored in a separate directory containing specific file formats. The exact data
organization depends on the tool used.

While the shapes in the relevant layers are the main focus of interest when gen-
erating masks, the layout designer normally works with this layout tree structure,
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and for good reasons. The physical design is considerably simplified by working at
higher levels in the hierarchy, as it means the layout designer does not need to handle
individual device shapes and parts of subblocks. What’s more, thinking in functional
units is supported by the hierarchy and the layout designer always has a clear insight
into the circuit topology. This “global view” helps further the goal of an optimized
final layout configuration.

Despite this facility, a layout designer must have a good grasp of the individual
layers and the implications of combining them. He/she may also need to work on the
polygonal level in certain cases (sometimes referred to as “polygon pushing”), or at
least must take a closer look at it. We demonstrate this in the next section with some
practice examples.

3.2.2 How to Read a Layout View

A small excerpt from a typical layout is shown in the top part of Fig. 3.8. We will
next go through this example step by step, to learn how to “read” a layout.

The layout detail shown in the top of Fig. 3.8 is based on the CMOS standard
process we discussed in Chap. 2 (Sect. 2.9). The bottom part of the diagram contains
a sectional view of structures generated from this layout. (We use the same colors
here as in Chap. 2, Sect. 2.9). If the layout view (Fig. 3.8, top) is a vertical view,
the sectional view (Fig. 3.8, bottom) can be thought of as a “horizontal” view of the
circuit, along the cutting line as identified in the layout (Fig. 3.8, top). Utilizing the
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Fig. 3.8 The layout of a simple CMOS inverter (top), as shown in a typical layout editor, and the
corresponding sectional view (bottom) and schematic (right)
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circuit diagram (see Fig. 3.8, right), we see that the layout is a simple configuration
comprising an NMOS transistor and a PMOS transistor. The sectional view shows
that the connection points for these transistors on the silicon surface are in part
interconnected and contacted with the first (bottom) metal layer (Metal1). This is, in
effect, a “circuit” at this stage.

Using today’s layout design tools, the engineer is only presented with a layout
view (Fig. 3.8, top). As the tool does not generate or present the sectional view,
he/she only sees the (two-dimensional) layout structure. Consequently, although the
engineer has to “work” in two dimensions, it is useful—sometimes unavoidable—to
“think” in three dimensions. “Reading” a layout means recognizing the devices and
their electrical connections on the chip and imagining how they are shaped physically.
Although this may initially seem a daunting task, there are techniques that can be
learned that make it easier, as we discuss next.

As a first step, the devices need to be identified: this is done by examining the
FEOL layers. We start by focusing on the drawn layer representing the “active” areas,
which define sections of the chip surface without field oxide (shown ocher in Fig. 3.8,
top). Normally, a drawn layer is assigned for these regions, but designations differ
greatly from manufacturer to manufacturer. The drawn layer in question is called
“Active” in our layout example in Fig. 3.8 (top). The mask “STI” (shallow trench
isolation) is produced from this layer by negation, i.e., the shapes in “Active” define
the regions that remain unaffected by STI.

In addition to these active surfaces, we are looking for polysilicon (“Poly”, shaded
green in Fig. 3.8, top) as both layers combined indicate a transistor. Specifically,
wherever shapes from these two layers cross, there is a channel of a field-effect
transistor (FET). It is often possible to identify most instances in a layout this way,
given that FETs are by far the most common basic devices. The aforesaid applies to
digital circuits and to most analog circuits.

Figure 3.8 shows that “Active” (ocher) and “Poly” (shaded green) cross in two
places. We have therefore two FETs in our example.

Figure 3.9 depicts these two transistors separately (these transistors were intro-
duced in Chap. 2, Sect. 2.9.3, see also Fig. 2.35e) by illustrating the layout and
sectional views with labeled source (S), drain (D) and bulk (B) contacts. Bulk (aka
backgate) contacts “belong” to the transistor layout as they define the potential of
the well or the substrate, respectively.

The difference between NMOS-FETs and PMOS-FETs is that the bulk areas of
PMOS-FETs are defined in processes with a p-substrate by a drawn “Nwell” layer
(spotted pale blue, see Fig. 3.9, top right). The transistors outside Nwell areas are
therefore NMOS-FETs. Bulks for NMOS-FETs are either the p-doped substrate of
the wafer (for single-well processes) or the areas with a fabricated Pwell layer (twin-
well processes). Either of these two scenarios could occur in our layout example, as
the Pwell-doped areas could be derived from the drawn “Nwell” layer by negation
(as we have seen in Chap. 2, Sect. 2.9.3) and would not then appear as a separate
(drawn) layer in the layout.

Now that we recognize NMOS-FETs and PMOS-FETs, the dopant types (n or p)
of the blue and red layers forming the source and drain areas should become clear
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Fig. 3.9 The layout and the corresponding sectional views of the two transistors in Fig. 3.8 with
marked contacts (D/S: drain/source, B: bulk) and gates (G). Transistors can be identified in any
layout structure by focusing on crossings of the active areas (layer “Active”, here depicted in ocher)
and the polysilicon (layer “Poly”, here shaded green)

as well. Additionally, n- and p-doping are reflected in the layer names: These n+ and
p+ implanted layers are respectively labeled “NSD” and “PSD” in our example.

Finally, the BEOL layers, which connect the devices, are to be considered. Con-
tacts and vias, for example, which are small, uniform squares in state-of-the-art
processes, are generally easy to pick out. There are also metal features, which must
always cover the contacts and vias and which form interconnects above the devices.
In our layout example in Fig. 3.8, we have contact holes in the drawn “Cont” layer
(dark gray) for contacting the source, drain and bulk regions. The layout of the inter-
connects are shown as the drawn layer “Metal1” (shaded bright gray). The gates,
electrically connected by poly, have a common contact in metal, which is contacted
to poly by the same “Cont” layer.

The two transistors are connected to form a logic inverter. The circuit schematic
for the example is depicted on the right in Fig. 3.8.

3.2.3 Graphics Operations

A wide range of edit commands and graphics operators are available in modern
layout editors. We shall only concern ourselves here with operators for manipulating
and selecting shapes. Convenience commands for configuring a number of elements,
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such as the “Distribute”, “Align”, and “Compact” commands, are not dealt with here
as they are well-known and intuitively understandable.

Interactive Shape Editing
Layout editors feature all of the standard graphics commands that we are familiar
with in other drafting software. Shape commands that are generally available include
“Add”, “Delete”, “Move”, “Copy Paste”, “Flip”, and “Rotate”. Layout editors also
offer different user concepts specific to the layout process that make working with
the tools easier. Data entry can be made with the mouse; numerical and text data can
also be entered using the keyboard, and so on.

In addition to these standard functions, other commands are available for working
with shapes when designing the layout:

• Stretching a shape by shifting a subset of its edges or corners (“Stretch”),
• Changing polygons by cutting out, truncating and attaching rectangles or more

complex polygons (e.g., “Notch”),
• Merging overlapping shapes into one shape (“Merge”),
• Splitting polygons along (any) intersecting lines (“Split”).

Logical Linking of Layers
Boolean operators from the field of mathematical algebra can also be applied to
shapes in different layers. They are very important and powerful operators that “log-
ically link” the “content” of these layers. While they are deployed sometimes in
physical layout design, their main use is in the design rule check (DRC) to identify
specific layout constellations for checking (Sect. 3.4 and Chap. 5, Sect. 5.4.5) and
in the layout post process (Sect. 3.3) to produce mask data. We demonstrate the
following, general standard logic operators in Fig. 3.10:

• OR: produces the geometrical union of two layers.
• AND: produces the geometrical intersection of two layers.
• XOR: produces the union minus the intersection of two layers.
• ANDNOT: generates the “geometrical difference” between two layers. Everything

that is in the second layer is “punched” out of the content of the first layer.

The upper portion of the figure shows a simple sample layout. This layout consists
of four rectangular shapes, two of which belong to a “red” layer and the other two
to a “blue” layer. The results of the operations are written in a new layer “x”, shown
in gray at the bottom of Fig. 3.10.
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x = blue OR red x = blue XOR redx = blue AND red x = red ANDNOT blue x = blue ANDNOT red

Original layout

Layer “blue”

Layer “red”

Layer “x”

Fig. 3.10 Logical linking operations applied to four shapes on two layers (top) using the standard
logic operators OR, AND, XOR, and ANDNOT (bottom, left to right)

Select Operations
Shapes that satisfy a specific criterion in a layer can be picked with select com-
mands. In Fig. 3.11, we demonstrate some key selection criteria based on specific
relationships between the shapes in the specified layers:

• INCLUDE: Selects shapes in a layer that overlap in any way with shapes in another
layer.

• OUTSIDE: Selects shapes in one layer that do not overlap with shapes in another
layer.

• INSIDE: Selects shapes in a layer that are fully covered by shapes in another layer.
• ENCLOSE: Selects shapes in a layer that fully cover shapes in another layer.
• CUT: Selects shapes in a layer that share a portion of their surface area (but not

their entire surface area) with shapes in another layer.

Original layout

Layer “blue”

Layer “red”

INCLUDE OUTSIDE INSIDE ENCLOSE

red INCLUDE blue

blue INCLUDE red

red OUTSIDE blue

blue OUTSIDE red

red INSIDE blue

blue INSIDE red
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red CUT blue

blue CUT red
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Fig. 3.11 Selection commands for filtering shapes from layers based on geometrical relationships
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In contrast to the linking operations, no new geometries are created by the selec-
tion commands; instead, existing geometries that meet the criteria are selected (i.e.,
identified). The results can be saved in a new layer as required. The selection com-
mands are of great interest for the DRC, as layer subsets of interest can be identified
this way (Sect. 3.4.3, Example 1).

Sizing Operators
We introduced the sizing operator in Chap. 2 (Sect. 2.4.2) when we discussed pre-
emptive edge shifts. (The structure’s boundary lines are shifted outwards by a specific
value or inwards in order to compensate for shrinking/enlarging effects that can
occur in subsequent structuring process steps.) Sizing is also very useful in the
DRC to check layouts for compliance with more complex design rules (Sect. 3.4.3,
Example 2). Furthermore, sizing can be applied to “clean up” layouts, as we shall
explain next.

A polygon is modified with the sizing operator by shifting all edges perpendicular
to the edge alignment by a specific value. The polygon is enlarged if the edges are
shifted by positive values; this operation is called oversizing. Whereas the polygon
shrinks if the values are negative; this latter operation is called undersizing.

Sizing has several noteworthy properties that must be understood, as they can
produce unfortunate and unexpected results if you are not aware of how they work.
Having said that, you can also leverage these properties to produce specific effects
that are helpful. We will take a closer look at these effects now.

Uneven growth. Oversizing by a value s causes the corners of a polygon to be
shifted by a distance v · s, where v > 1, i.e., the corners are always shifted from their
original positions by more than the shift value s, e.g., v = √

2 for right angles. For
acute angles (angles <90°), the value v is greater than

√
2 and can theoretically be

extremely large.1 This effect is a generic defect in sizing, as “even” growth in all
directions is the desired outcome in most cases (Fig. 3.12, left).

Ideally, we would like circular arcs at the corners (a circle defines a set of points
with identical distances to the corner). But as we know, arcs cannot be modeled in
the data structure. Oversizing can however be configured in some tools such that the
corners can be “beveled” with additional edges to approximate a circular arc as per
Fig. 3.6c. Two examples are shown in Fig. 3.12 (right).

Rounding error. Another difficulty with the sizing operator is that, in the case of
inclined edges (see Fig. 3.12, bottom), the corners are not placed on the grid. This
causes rounding errors because integer values are used for the coordinates. While
these rounding errors can often be ignored, the angles w.r.t. the coordinate system may
be altered (Fig. 3.13c), producing unwanted results in some scenarios. For example,
design rules may be violated by this effect, which would not have occurred with
mathematically correct sizing.

1Acute angles are often not allowed in layouts because the edges in question are treated as being
“opposite” by DRC tools and are flagged as width rule violations. Even if this is not a problem for
fabrication, these cases should be avoided to minimize the work involved in evaluating a DRC.
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Fig. 3.12 Oversizing without (left) and with beveling corners (right)

Irreversibility. If two sizing operations are performed immediately one after
another, with the same value but in opposite directions, the final result may not
be the same as the original structure. There are a number of reasons for this, as
illustrated in Fig. 3.13:

• Small polygons disappear during undersizing (also narrow ribs), Fig. 3.13a,
• Small holes in polygons disappear during oversizing, Fig. 3.13b,
• Rounding errors cause shape changes, Fig. 3.13c.
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(1) Undersize (2) Oversize

Devia on
from original

Devia on
from original

(1) Oversize (2) Undersize

Devia on
from original

Original
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Fig. 3.13 The effects of two sizing operations with the same absolute value but different signs, i.e.,
sizing in opposite directions, that can produce polygons which deviate from the original shape



102 3 Bridges to Technology: Interfaces, Design Rules, and Libraries

Cleaning up layouts. If sequences of sizing operations and logical links are used to 
create certain layout structures in the layout post process or in the DRC, these steps 
may produce unwanted shapes caused by rounding errors. These unwanted shapes 
are often very small. Hence, the depicted effects in Fig. 3.13a, b could be used to 
positive effect to eliminate such small artifacts.


