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• Area routing directly constructs metal routes for signal connections 
(no global and detailed routing, Secs. 7.1-7.2) 

• Non-Manhattan routing is presented in Sec. 7.3

• Clock signals and other nets that require special treatment 
are discussed in Secs. 7.4-7.5 

7 Specialized Routing
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7.1 Introduction to Area Routing

• The goal of area routing is to route all nets in the design 
− without global routing 
− within the given layout space
− while meeting all geometric and electrical design rules

• Area routing performs the following optimizations 
− minimizing the total routed length and number of vias of all nets
− minimizing the total area of wiring and the number of routing layers
− minimizing the circuit delay and ensuring an even wire density
− avoiding harmful capacitive coupling between neighboring routes

• Subject to 
− technology constraints (number of routing layers, minimal wire width, etc.) 
− electrical constraints (signal integrity, coupling, etc.)
− geometry constraints (preferred routing directions, wire pitch, etc.)
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Metal1
Metal2
Via

Minimal  wirelength:

IC1
4

1
IC2
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1
IC3
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4

Alternative routing path:

IC1
4

1
IC2

4

1
IC3

4

1

7.1 Introduction to Area Routing
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Distance metric between two points P1 (x1,y1) and P2 (x2,y2)

P1

P2

dM 

yxyyxxPPdM ΔΔ),( 121221 +=−+−=

dM 

Euclidean distance

Manhattan distance

dE
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7.1 Introduction to Area Routing
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• Multiple Manhattan shortest paths between two points

7.1 Introduction to Area Routing
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With no obstacles, the number of Manhattan shortest paths in an Δx × Δy region is 

∆y

m = 210    

7.1 Introduction to Area Routing

• Multiple Manhattan shortest paths between two points
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• Two pairs of points may admit non-intersecting Manhattan shortest paths, 
while their Euclidean shortest paths intersect (but not vice versa).

7.1 Introduction to Area Routing
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• If all pairs of Manhattan shortest paths between two pairs of points intersect, 
then so do Euclidean shortest paths. 

7.1 Introduction to Area Routing
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• The Manhattan distance dM is (slightly) larger than the Euclidean distance dE: 

=
E

M

d
d

1.41   worst case: a square where  yx ΔΔ =

1.27   on average, without obstacles

1.15   on average, with obstacles

7.1 Introduction to Area Routing
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7.2 Net Ordering in Area Routing
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7.2 Net Ordering in Area Routing

Effect of net ordering on routability 

A´ B´

Optimal routing of net A

A
B

A´ B´

Optimal routing of net B

A
B
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Nets A and B can be routed 
only with detours

A
B
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A

A´

B
B´

Routing net A first

7.2 Net Ordering in Area Routing

Effect of net ordering on total wirelength 

Routing net B first

A

A´

B
B´
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• For n nets, there are n! possible net orderings 

⇒ Constructive heuristics are used 

7.2 Net Ordering in Area Routing
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A

A´ B
B´

Net A has a higher aspect ratio
of its bounding box; routing A
first results in shorter total wirlength

Routing net B first results 
in longer total wirelength

A

A´ B
B´

• Rule 1: For two nets i and j, if aspect ratio (i ) > aspect ratio (j ), 
then i is routed before j

7.2 Net Ordering in Area Routing
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B

C
A

D D′

C´ B′

A′

B

C
A

D D′

C´ B′

A′

Ordering D-A-C-B
or   D-C-B-A
(not  D-B-A-C)

A

B

C

D

Constraint Graph Net Ordering

• Rule 2: For two nets i and j, if the pins of i are contained within MBB(j ), 
then i is routed before j

7.2 Net Ordering in Area Routing
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D´

A B
C

A´ E

C´
E´

B´

D
Pins

Inside (Edge) (net)

MBB (A)
B
C
D
E

D (B,C,D)
- (A,C,D)
- (A)
- (-)
- (A,C)

3
3
1
0
2

π

• Rule 3: Let Π(net) be the number of pins within MBB(net) for net net. 
For two nets i and j, if Π(i ) < Π(j ), then i is routed before j. 
- For each net, consider the pins of other nets within its bounding box 

- The net with the smallest number of such pins is routed first 

- Ties are broken based on the number of pins that are contained 
within the bounding box and on its edge  

D´

A B
C

A´ E

C´
E´

B´

D

7.2 Net Ordering in Area Routing
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• Allow 45- or 60-degree segments in addition to horizontal and vertical segments

• λ-geometry, where λ represents the number of possible routing directions 
and the angles π / λ at which they can be oriented

− λ = 2 (90 degrees): Manhattan routing (four routing directions) 

− λ = 3 (60 degrees): Y-routing (six routing directions)

− λ = 4 (45 degrees): X-routing (eight routing directions) 

• Non-Manhattan routing is primarily employed 
on printed circuit boards (PCBs) 

7.3 Non-Manhattan Routing
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• Route planning using octilinear Steiner minimum trees (OSMT) 

• Generalize rectilinear Steiner trees by allowing segments 
that extend in eight directions

• More freedom when placing Steiner points 

7.3.1 Octilinear Steiner Trees

1
3

54
6 7

8 9

10
11 12

2
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Octilinear Steiner Tree Algorithm

Input: set of all pins P and their coordinates
Output: heuristic octilinear minimum Steiner tree OST

OST = Ø

T = set of all three-pin nets of P found by Delaunay triangulation

sortedT = SORT(T,minimum octilinear distance)

for (i = 1 to |sortedT |)

subT = ROUTE(sortedT [i ] ) // route minimum tree over subT

ADD(OST,subT ) // add route to existing tree

IMPROVE(OST,subT ) // locally improve OST based on subT
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7.3.1 Octilinear Steiner Trees
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(1) Triangulate

7.3.1 Octilinear Steiner Trees
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7.3.1 Octilinear Steiner Trees
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7.3.1 Octilinear Steiner Trees
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(3) Locally improve OST

cost = 6 cost ≈ 5.7
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7.3.1 Octilinear Steiner Trees

1
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(3) Locally improve OST
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T

S

7.3.2 Octilinear Maze Search
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• A clock routing instance (clock net) is represented by n+1 terminals, 
where s0 is designated as the source, and S = {s1,s2, … ,sn} is designated 
as sinks 

− Let  si,  0 ≤ i ≤ n,  denote both a terminal and its location

• A clock routing solution consists of a set of wire segments that connect 
all terminals of the clock net, so that a signal generated at the source 
propagates to all of the sinks

− Two aspects of clock routing solution: topology and geometric embedding  

• The clock-tree topology (clock tree) is a rooted binary tree G with n leaves 
corresponding to the set of sinks 

− Internal nodes = Steiner points 

7.4.1 Terminology
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7.4.1 Terminology

s1
s2

s4 s6

s5

s0
s3

Clock routing 
problem instance 

u1

s0

s1

u2

u3 u4

s2 s3 s4 s5 s6

Connection topology

s1
s2

s4 s6

s5

s0
s3

u1

u2u3 u4

Embedding
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• Clock skew: (maximum) difference in clock signal arrival times between sinks 

• Local skew: maximum difference in arrival times of the clock signal 
at the clock pins of two or more related sinks

− Sinks within distance d > 0 

− Flip-flops or latches connected by a directed signal path 

• Global skew: maximum difference in arrival times of the clock signal 
at the clock pins of any two (related or unrelated) sinks

− Difference between shortest and longest source-sink path delays 
in the clock distribution network 

− The term “skew” typically refers to “global skew”  

7.4.1 Terminology

|),(),(|max)( 00
,

ji
Sss

sstsstTskew
ji

−=
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• Zero skew: zero-skew tree (ZST)

− ZST problem

• Bounded skew: true ZST may not be necessary in practice

− Signoff timing analysis is sufficient with a non-zero skew bound 

− In addition to final (signoff) timing, this relaxation can be useful with intermediate 
delay models when it facilitates reductions in the length of the tree 

− Bounded-Skew Tree (BST) problem

• Useful skew: correct chip timing only requires control of the local skews 
between pairs of interconnected flip-flops or latches

− Useful skew formulation is based on analysis of local skew constraints

7.4.2 Problem Formulations for Clock-Tree Routing
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7.5 Modern Clock Tree Synthesis

• A clock tree should have low skew, while delivering the same signal 
to every sequential gate

• Clock tree synthesis is performed in two steps: 

(1) Initial tree construction (Sec. 7.5.1) with one of these scenarios

− Construct a regular clock tree, largely independent of sink locations  

− Simultaneously determine a topology and an embedding 

− Construct only the embedding, given a clock-tree topology as input

(2) Clock buffer insertion and several subsequent skew optimizations (Sec. 7.5.2) 
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7.5.1 Constructing Trees with Zero Global Skew

H-tree

• Exact zero skew due to the symmetry of the H-tree

• Used for top-level clock distribution, not for the entire clock tree

− Blockages can spoil the symmetry of an H-tree 

− Non-uniform sink locations and varying sink capacitances 
also complicate the design of H-trees 
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7.5.1 Constructing Trees with Zero Global Skew

Method of Means and Medians (MMM)

• Can deal with arbitrary locations of clock sinks 

• Basic idea: 

− Recursively partition the set of terminals into two subsets of equal size (median)

− Connect the center of gravity (COG) of the set to the centers of gravity 
of the two subsets (the mean)
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7.5.1 Constructing Trees with Zero Global Skew

Method of Means and Medians (MMM)

Partition S by 
the median

Find the center 
of gravity for the 

left and right 
subsets of S

Connect the 
center of gravity 

of S with the 
centers of 

gravity of the 
left and right 

subsets

Final result after 
recursively 

performing MMM 
on each subset

Find the 
center of 
gravity  
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7.5.1 Constructing Trees with Zero Global Skew

Method of Means and Medians (MMM)

Input: set of sinks S, empty tree T
Output: clock tree T

if (|S| ≤ 1)
return

(x0,y0) = (xc(S),yc(S)) // center of mass for S
(SA,SB) = PARTITION(S) // median to determine SA and SB

(xA,yA) = (xc(SA),yc(SA)) // center of mass for SA

(xB,yB) = (xc(SB),yc(SB)) // center of mass for SB

ROUTE(T,x0,y0,xA,yA) // connect center of mass of S to
ROUTE(T,x0,y0,xB,yB) //   center of mass of SA and SB

BASIC_MMM(SA,T) // recursively route SA

BASIC_MMM(SB,T) // recursively route SB
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7.5.1 Constructing Trees with Zero Global Skew

Recursive Geometric Matching (RGM)

• RGM proceeds in a bottom-up fashion 

− Compare to MMM, which is a top-down algorithm 

• Basic idea: 

− Recursively determine a minimum-cost geometric matching of n sinks

− Find a set of n / 2 line segments that match n endpoints and minimize total length 
(subject to the matching constraint) 

− After each matching step, a balance or tapping point is found 
on each matching segment to preserve zero skew to the associated sinks 

− The set of n / 2 tapping points then forms the input to the next matching step 
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7.5.1 Constructing Trees with Zero Global Skew

Recursive Geometric Matching (RGM)

Set of n
sinks S

Min-cost 
geometric 
matching

Find balance or 
tapping points 

(point that achieves 
zero skew in the 

subtree, not always 
midpoint) 

Min-cost 
geometric 
matching

Final result after 
recursively 

performing RGM 
on each subset
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7.5.1 Constructing Trees with Zero Global Skew

Input: set of sinks S, empty tree T
Output: clock tree T

if (|S| ≤ 1)
return

M = min-cost geometric matching over S
S’ = Ø
foreach (<Pi,Pj > ∈ M)

TPi = subtree of T rooted at Pi

TPj = subtree of T rooted at Pj

tp = tapping point on (Pi,Pj) // point that minimizes the skew of 
//   the tree Ttp = TPi U TPj U (Pi,Pj)

ADD(S’,tp) // add tp to S’
ADD(T,(Pi,Pj)) // add matching segment (Pi,Pj) to T

if (|S| % 2 == 1) // if |S| is odd, add unmatched node
ADD(S’, unmatched node)

RGM(S’,T) // recursively call RGM 

Recursive Geometric Matching (RGM)
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7.5.1 Constructing Trees with Zero Global Skew

Exact Zero Skew

• Adopts a bottom-up process of matching subtree roots and merging 
the corresponding subtrees, similar to RGM 

• Two important improvements: 

− Finds exact zero-skew tapping points with respect to the Elmore delay model 
rather than the linear delay model 

− Maintains exact delay balance even when two subtrees with very different 
source-sink delays are matched (by wire elongation)
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7.5.1 Constructing Trees with Zero Global Skew

Exact Zero Skew

Subtree Ts1 Subtree Ts2

z 1 – z

Tapping point tp

s1 s2

w1 w2

Tapping point tp,
where Elmore delay 
to sinks is equalized

t(Ts1 )
C(s1)C(w1) C(w1)

2 2

R(w1)

C(s2)C(w2) C(w2)
2 2

R(w2)

1 – z

z

t(Ts2 )
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7.5.1 Constructing Trees with Zero Global Skew

Deferred-Merge Embedding (DME)

• Defers the choice of merging (tapping) points for subtrees of the clock tree

• Needs a tree topology as input 

• Weakness in earlier algorithms: 

− Determine locations of internal nodes of the clock tree too early; 
once a centroid is found, it is never changed

• Basic idea:

− Two sinks in general position will have an infinite number of midpoints, 
creating a tilted line segment – Manhattan arc 

− Manhattan arc: same minimum wirelength and exact zero skew  

− Selection of embedding points for internal nodes on Manhattan arc 
will be delayed for as long as possible 
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7.5.1 Constructing Trees with Zero Global Skew

Deferred-Merge Embedding (DME)

s2

s1

Euclidean midpoint

Locus of all 
Manhattan midpoints is 
a Manhattan arc in the  
Manhattan geometry

s2s1

s2

s1

Euclidean midpoint

Sinks are aligned, hence, Manhattan arc
has zero length
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7.5.1 Constructing Trees with Zero Global Skew

Deferred-Merge Embedding (DME)

• Embeds internal nodes of the given topology G via a two-phase process 

• First phase is bottom-up

− Determines all possible locations of internal nodes of G
consistent with a minimum-cost ZST T

− Output: “tree of line segments”, with each line segment being 
the locus of possible placements of an internal node of T

• Second phase is top-down

− Chooses the exact locations of all internal nodes in T

− Output: fully embedded, minimum-cost ZST with topology G
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7.5.1 Constructing Trees with Zero Global Skew

Deferred-Merge Embedding (DME) Tilted Rectangular Region (TRR)
for the Manhattan arc of s1 and s2

with a radius of two units

Core
Radius

s2

s1

s2

s1
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7.5.1 Constructing Trees with Zero Global Skew

Deferred-Merge Embedding (DME) Merging segment for node u3
(the parent of nodes u1 and u2) is the 
locus of feasible locations of u3 with 
zero skew and minimum wirelength

u1

s1

u3

u2

s2 s3 s4

|eu2  |

ms(u2)ms(u1)

ms(u3)

s1

s2

s3

s4

|eu1  |

trr(u2)

trr(u1)
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7.5.1 Constructing Trees with Zero Global Skew

Deferred-Merge Embedding (DME)

Build Tree of Segments Algorithm (DME Bottom-Up Phase)
s1

s2

s8

s7

s6

s5
s0

s3 s4

s1

s2

s3 s4

s8
s7

s6
s5

s0

s1

s2

s3

s4

s8

s7

s6

s5
s0

s1

s2
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s5s0

s3
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7.5.1 Constructing Trees with Zero Global Skew

Input: set of sinks S and tree topology G(S,Top) 
Output: merging segments ms(v) and edge lengths |ev|, v ∈ G

foreach (node v ∈ G, in bottom-up order)
if (v is a sink node) // if v is a terminal, then ms(v) is a

ms[v] = PL(v) //   zero-length Manhattan arc
else // otherwise, if v is an internal node,

(a,b) = CHILDREN(v) //   find v’s children and
CALC_EDGE_LENGTH(ea,eb)  //   calculate the edge length
trr[a][core] = MS(a) // create trr(a) – find merging segment
trr[a][radius] = |ea| //   and radius of a
trr[b][core] = MS(b) // create trr(b) – find merging segment
trr[b][radius] = |eb| //   and radius of b
ms[v] = trr[a] ∩ trr[b] // merging segment of v

Deferred-Merge Embedding (DME)

Build Tree of Segments Algorithm (DME Bottom-Up Phase)
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7.5.1 Constructing Trees with Zero Global Skew

Deferred-Merge Embedding (DME)

Find Exact Locations (DME Top-Down Phase)

ms(v)
pl(par)trr(par)

Possible locations of child node v 
given the location of its parent node par

|epar|
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7.5.1 Constructing Trees with Zero Global Skew

Deferred-Merge Embedding (DME)

Find Exact Locations (DME Top-Down Phase)

s1

s2

s8

s7

s6

s5
s0

s3
s4

s7

s5

s1

s2

s8

s6

s0

s3
s4

s1

s2

s8

s7

s6

s5s0
s3

s4

s1

s2

s8

s7

s6

s5s0

s3

s4
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7.5.1 Constructing Trees with Zero Global Skew

Input: set of sinks S, tree topology G, outputs of DME bottom-up phase
Output: minimum-cost zero-skew tree T with topology G

foreach (non-sink node v ∈ G top-down order)
if (v is the root)

loc = any point in ms(v)
else

par = PARENT(v) // par is the parent of v
trr[par][core] = PL(par) // create trr(par) – find merging segment
trr[par][radius] = |ev| //   and radius of par
loc = any point in ms[v] ∩ trr[par]

pl[v] = loc

Deferred-Merge Embedding (DME)

Find Exact Locations (DME Top-Down Phase)
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7.5.2 Clock Tree Buffering in the Presence of Variation

• To address challenging skew constraints, a clock tree 
undergoes several optimization steps, including 

− Geometric clock tree construction 

− Initial clock buffer insertion 

− Clock buffer sizing 

− Wire sizing 

− Wire snaking

• In the presence of process, voltage, and temperature variations, 
such optimizations require modeling the impact of variations 

− Variation model encapsulates the different parameters, such as width and thickness,
of each library element as well-defined random variables
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• Area routing: avoiding the division into global and detailed routing 
− Doing everything at once, subject to design rules 
− Small netlists with complicated constraints 
− Analog, MCM and PCB routing

• Manhattan vs Euclidean paths 
− Euclidean paths are no longer than Manhattan, usually shorter 
− Unique Euclidean shortest path 
− Multiple Manhattan paths 
− When Euclidean shortest paths intersect, there may exist Manhattan shortest paths 

that do not (not vice versa)

• Net ordering is important in area routing 
− Rule 1: nets with higher aspect ratio (less flexible) routed first 
− Rule 2: nets surrounded by other nets (more constrained) routed first 
− Rule 3: nets with more pins inside other net's bounding boxes routed first 

Summary of Chapter 7 – Area Routing 
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• Recall that Manhattan routing is dictated by the limitations 
of modern semiconductor manufacturing for thin wires 

• PCB routing is not subject to those limitations 
− Can use shorter connections

• Non-Manhattan connections 
− Diagonal (45- or 60-degree) segments in addition to horizontal and vertical segments 
− Create more freedom to place Steiner points  

• Octilinear Steiner Tree construction 
− Algorithms are generally adapted from the Manhattan case 
− Should produce results that are at least as good as the Manhattan case 

Summary of Chapter 7 – Non-Manhattan Tree Routing 
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• Similar to signal-net routing, except for 
− Very large numbers of sinks 
− The need to equalize propagation delays from the root to sinks 
− Longer routes (to satisfy the equalization constraint) 
− Typical algorithms determine topology first, then geometric embedding

• Clock skew 
− Consider propagation delay from the root to each sink 
− Skew is the maximal pairwise difference between delays (over all pairs of sinks)
− May be limited to sinks that are within distance d > 0 (local skew)

• For a specified wire delay model 
− ZST: Zero-Skew Tree routing requires that skew = 0
− BST: Bounded-Skew Tree routing requires that skew < Bound

Summary of Chapter 7 – Clock Network Routing 
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• Initial clock tree construction  
− Topology determination (MMM or RGM) 
− DME embedding (different flavors for ZST and BST) 
− Working with the Elmore delay model requires more effort 

than working with linear delay models  

• Geometric obstacles (e.g., macros) 
− May require detours 
− Can be handled during DME (complicated) or during post-processing 

(often achieves as good results) 

• Clock-tree optimization  
− Buffer insertion 
− Buffer sizing 
− Wire sizing 
− Wire snaking by small amounts 
− Decreasing the impact of process variability 

Summary of Chapter 7 – Modern Clock Tree Synthesis 
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