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4.1 Introduction
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4.1 Introduction
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4.1 Introduction

Global 
Placement

Detailed 
Placement
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4.2 Optimization Objectives

Total 
Wirelength

Number of 
Cut Nets

Wire 
Congestion
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Delay
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4.2 Optimization Objectives – Total Wirelength
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Wirelength estimation for a given placement

4.2 Optimization Objectives – Total Wirelength
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4.2 Optimization Objectives – Total Wirelength

Wirelength estimation for a given placement (cont‘d.)
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Preferred method: Half-perimeter wirelength (HPWL)
• Fast (order of magnitude faster than RSMT)
• Equal to length of RSMT for 2- and 3-pin nets
• Margin of error for real circuits approx. 8%  [Chu, ICCAD 04]

hwL +=HPWL

4.2 Optimization Objectives – Total Wirelength
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Wirelength estimation for a given placement (cont‘d.)
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4.2 Optimization Objectives – Total Wirelength

Total wirelength with net weights (weighted wirelength)

• For a placement P, an estimate of total weighted wirelength is

where w(net) is the weight of net, and L(net) is the estimated wirelength of net.

• Example:

∑
∈

⋅=
Pnet

netLnetwPL )()()(

33314472)()()( =⋅+⋅+⋅=⋅= ∑
∈Pnet

netLnetwPL

a

b

d

c

f

e
b1 e1

c1

a1
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d2 f2

f1

Nets Weights
N1 = (a1, b1, d2) w(N1) = 2
N2 = (c1, d1, f1) w(N2) = 4
N3 = (e1, f2) w(N3) = 1
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4.2 Optimization Objectives – Number of Cut Nets

Cut sizes of a placement

• To improve total wirelength of a placement P, separately calculate the number 
of crossings of global vertical and horizontal cutlines, and minimize

where ΨP(cut) be the set of nets cut by a cutline cut

∑∑
∈∈
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4.2 Optimization Objectives – Number of Cut Nets

Cut sizes of a placement

• Example:

• Cut values for each global cutline
ψP(v1) = 1 ψP(v2) = 2
ψP(h1) = 3 ψP(h2) = 2

• Total number of crossings in P
ψP(v1) + ψP(v2) + ψP(h1) + ψP(h2) = 1 + 2 + 3 + 2 = 8

• Cut sizes
X(P) = max(ψP(v1),ψP(v2)) = max(1,2) = 2
Y(P) = max(ψP(h1),ψP(h2)) = max(3,2) = 3

Nets
N1 = (a1, b1, d2)
N2 = (c1, d1, f1)
N3 = (e1, f2)

a

b

d

c

f

b1 e1

c1

d1

d2

a1

e

v1 v2

h2

h1 f2

f1



VLSI Physical Design: From Graph Partitioning to Timing Closure         Chapter 4: Global and Detailed Placement

©
 K

LM
H

Li
en

ig14

4.2 Optimization Objectives – Wire Congestion

Routing congestion of a placement

• Ratio of demand for routing tracks to the supply of available routing tracks 

• Estimated by the number of nets that pass through the boundaries of individual 
routing regions 

SBCH CHSB

Wire capacities
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4.2 Optimization Objectives – Wire Congestion

Routing congestion of a placement

• Formally, the local wire density φP(e) of an edge e between two neighboring 
grid cells is

where ηP(e) is the estimated number of nets that cross e and 
σP(e) is the maximum number of nets that can cross e

• If φP(e) > 1, then too many nets are estimated to cross e, making P more likely 
to be unroutable.  

• The wire density of P is

where E is the set of all edges

• If Φ(P) ≤ 1, then the design is estimated to be fully routable, otherwise routing 
will need to detour some nets through less-congested edges 

)(σ
)(η)(φ

e
ee

P

P
P =

( ))(φmax)( eP P
Ee∈
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4.2 Optimization Objectives – Wire Congestion

Wire Density of a placement
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4.2 Optimization Objectives – Signal Delay

Circuit timing of a placement

• Static timing analysis using actual arrival time (AAT) and required arrival time 
(RAT)

− AAT(v) represents the latest transition time at a given node v
measured from the beginning of the clock cycle 

− RAT(v) represents the time by which the latest transition at v must complete 
in order for the circuit to operate correctly within a given clock cycle. 

• For correct operation of the chip with respect to setup (maximum path delay) 
constraints, it is required that AAT(v) ≤ RAT(v). 
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Global Placement

4.1 Introduction
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• Partitioning-based algorithms:
− The netlist and the layout are divided into smaller sub-netlists and sub-regions, 

respectively 
− Process is repeated until each sub-netlist and sub-region is small enough 

to be handled optimally 
− Detailed placement often performed by optimal solvers, facilitating a natural 

transition from global placement to detailed placement 
− Example: min-cut placement

• Analytic techniques:
− Model the placement problem using an objective (cost) function, 

which can be optimized via numerical analysis 
− Examples: quadratic placement and force-directed placement 

• Stochastic algorithms:
− Randomized moves that allow hill-climbing are used to optimize the cost 

function 
− Example: simulated annealing

Global Placement



VLSI Physical Design: From Graph Partitioning to Timing Closure         Chapter 4: Global and Detailed Placement

©
 K

LM
H

Li
en

ig20

StochasticPartitioning-based Analytic

Quadratic
placement

Min-cut 
placement

Simulated annealingForce-directed 
placement

Global Placement
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4.3.1 Min-Cut Placement

• Uses partitioning algorithms to divide (1) the netlist and (2) the layout region 
into smaller sub-netlists and sub-regions 

• Conceptually, each sub-region is assigned a portion of the original netlist 

• Each cut heuristically minimizes the number of cut nets using, for example,
− Kernighan-Lin (KL) algorithm

− Fiduccia-Mattheyses (FM) algorithm 
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Alternating cutline directions

4.3.1 Min-Cut Placement
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Input: netlist Netlist, layout area LA, minimum number of cells per region cells_min
Output: placement P

P = Ø
regions = ASSIGN(Netlist,LA) // assign netlist to layout area
while (regions != Ø) // while regions still not placed

region = FIRST_ELEMENT(regions) // first element in regions
REMOVE(regions, region) // remove first element of regions
if (region contains more than cell_min cells)

(sr1,sr2) = BISECT(region) // divide region into two subregions
//   sr1 and sr2, obtaining the sub-
//   netlists and sub-areas

ADD_TO_END(regions,sr1) // add sr1 to the end of regions
ADD_TO_END(regions,sr2) // add sr2 to the end of regions

else
PLACE(region) // place region
ADD(P,region) // add region to P

4.3.1 Min-Cut Placement
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Given:

Task: 4 x 2 placement with minimum wirelength using alternative 
cutline directions and the KL algorithm 

1

2

3

4

5 6

4.3.1 Min-Cut Placement – Example 

cut1
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4.3.1 Min-Cut-Platzierung: Beispiel

Vertical cut cut1:  L={1,2,3}, R={4,5,6}
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4 5
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cut1 cut1

1
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4

5 6

cut1

KL Algorithm
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Horizontal cut cut2L: T={1,4}, B={2,0}

1

2 0

4

Horizontal cut cut2R: T={3,5}, B={6,0}

3 5

60
cut2L cut2R

1 4 5 3

2 6
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2 3
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4 5

6

0

cut1

1

20

4 5 3
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cut3BL cut3BR

cut3TL cut3TR



VLSI Physical Design: From Graph Partitioning to Timing Closure         Chapter 4: Global and Detailed Placement

©
 K

LM
H

Li
en

ig27

2

1

3

4 1

2

4

3

2

1

4

3

p‘

BR

TR

BR

TR

2

1
4

3

x

2

1
4

3

1

2 4

3

4.3.1 Min-Cut Placement – Terminal Propagation

• Terminal Propagation
− External connections are represented by artificial connection points 

on the cutline
− Dummy nodes in hypergraphs 
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4.3.1 Min-Cut Placement 

• Advantages:

− Reasonably fast

− Objective function can be adjusted, e.g., to perform timing-driven placement 

− Hierarchical strategy applicable to large circuits

• Disadvantages:

− Randomized, chaotic algorithms – small changes in input lead to large changes 
in output 

− Optimizing one cutline at a time may result in routing congestion elsewhere 
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4.3.2 Analytic Placement – Quadratic Placement

• Objective function is quadratic; sum of (weighted) squared Euclidean distance
represents placement objective function

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

• Only two-point-connections

• Minimize objective function by equating its derivative to zero 
which reduces to solving a system of linear equations 

( ) ( )( )∑
=

−+−=
n

ji
jijiij yyxxcPL
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22

2
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4.3.2 Analytic Placement – Quadratic Placement

• Similar to Least-Mean-Square Method (root mean square)

• Build error function with analytic form: ( )∑ −+⋅= 2),( ii ybxabaE
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4.3.2 Analytic Placement – Quadratic Placement

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

• Each dimension can be considered independently:

• Convex quadratic optimization problem: any local minimum solution 
is also a global minimum

• Optimal x- and y-coordinates can be found by setting the partial derivatives 
of Lx(P) and Ly(P) to zero  

( ) ( )( )∑
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4.3.2 Analytic Placement – Quadratic Placement

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

• Each dimension can be considered independently:

• where A is a matrix with A[i][j] = -c(i,j) when i ≠ j, 
and A[i][i] = the sum of incident connection weights of cell i. 

• X is a vector of all the x-coordinates of the non-fixed cells, and bx is a vector 
with bx[i] = the sum of x-coordinates of all fixed cells attached to i. 

• Y is a vector of all the y-coordinates of the non-fixed cells, and by is a vector 
with by[i] = the sum of y-coordinates of all fixed cells attached to i.

( ) ( )( )∑
=

−+−=
n

ji
jijiij yyxxcPL

1,

22

2
1)(

2

1,1

)(),()( ji

n

ji
x xxjicPL −= ∑

==

2

1,1

)(),()( ji

n

ji
y yyjicPL −= ∑

==

0)(
=−=

∂
∂

x
x bAX
X

PL 0
)(

=−=
∂

∂
y

y bAY
Y

PL



VLSI Physical Design: From Graph Partitioning to Timing Closure         Chapter 4: Global and Detailed Placement

©
 K

LM
H

Li
en

ig33

4.3.2 Analytic Placement – Quadratic Placement

where n is the total number of cells, and c(i,j) is the connection cost between cells i and j.

• Each dimension can be considered independently:

• System of linear equations for which iterative numerical methods can be used 
to find a solution 
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• Mechanical analogy: mass-spring system

− Squared Euclidean distance is proportional to the energy of a spring 
between these points

− Quadratic objective function represents total energy of the spring system; 
for each movable object, the x (y) partial derivative represents the total force 
acting on that object 

− Setting the forces of the nets to zero, an equilibrium state is mathematically 
modeled that is characterized by zero forces acting on each movable object 

− At the end, all springs are in a force equilibrium with a minimal total spring 
energy; this equilibrium represents the minimal sum of squared wirelength

→ Result: many cell overlaps

4.3.2 Analytic Placement – Quadratic Placement
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• Second stage of quadratic placers: cells are spread out to remove overlaps

• Methods:

− Adding fake nets that pull cells away from dense regions toward anchors

− Geometric sorting and scaling

− Repulsion forces, etc.

4.3.2 Analytic Placement – Quadratic Placement
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• Advantages:

− Captures the placement problem concisely in mathematical terms 

− Leverages efficient algorithms from numerical analysis and available software 

− Can be applied to large circuits without netlist clustering (flat) 

− Stability: small changes in the input do not lead to large changes in the output 

• Disadvantages:

− Connections to fixed objects are necessary: I/O pads, pins of fixed macros, etc. 

4.3.2 Analytic Placement – Quadratic Placement
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• Cells and wires are modeled using the mechanical analogy of a mass-spring 
system, i.e., masses connected to Hooke’s-Law springs

• Attraction force between cells is directly proportional to their distance 

• Cells will eventually settle in a force equilibrium → minimized wirelength  

4.3.2 Analytic Placement – Force-directed Placement
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• Given two connected cells a and b, the attraction force           exerted on a by b is

where 

− c(a,b) is the connection weight (priority) between cells a and b, and

− is the vector difference of the positions of a and b in the Euclidean plane 

• The sum of forces exerted on a cell i connected to other cells 1… j is

• Zero-force target (ZFT): position that minimizes this sum of forces  

4.3.2 Analytic Placement – Force-directed Placement

abF
)(),( abbacFab −⋅=

∑
≠

=
0),( jic

iji FF

)( ab −
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Zero-Force-Target (ZFT) position of cell i

4.3.2 Analytic Placement – Force-directed Placement

min Fi = c(i,a) ∙ (a – i ) + c(i,b) ∙ (b – i ) + c(i,c) ∙ (c – i ) + c(i,d) ∙ (d – i )

a

b

c

d
i

ZFT Position
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Basic force-directed placement

4.3.2 Analytic Placement – Force-directed Placement

• Iteratively moves all cells to their respective ZFT positions 

• x- and y-direction forces are set to zero:

• Rearranging the variables to solve for xi
0 and yi

0 yields
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0 1 2

1

2

In2

In3

In1

Out

In1

In2

In3

Out1

Example: ZFT position

4.3.2 Analytic Placement – Force-directed Placement

Given:
− Circuit with NAND gate 1 and four I/O pads on a 3 x 3 grid
− Pad positions: In1 (2,2),   In2 (0,2),   In3 (0,0),   Out (2,0)
− Weighted connections: c(a,In1) = 8,   c(a,In2) = 10,   c(a,In3) = 2,   c(a,Out) = 2

Task: find the ZFT position of cell a
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4.3.2 Analytic Placement – Force-directed Placement

Given:
− Circuit with NAND gate 1 and four I/O pads on a 3 x 3 grid
− Pad positions: In1 (2,2),   In2 (0,2),   In3 (0,0),   Out (2,0)

Solution:

ZFT position of cell a is (1,2)
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Example: ZFT position
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4.3.2 Analytic Placement – Force-directed Placement

0 1 2

1

2

In2

In3

In1

Out

a

Given:
− Circuit with NAND gate 1 and four I/O pads on a 3 x 3 grid
− Pad positions: In1 (2,2),   In2 (0,2),   In3 (0,0),   Out (2,0)

Solution:

Example: ZFT position

ZFT position of cell a is (1,2)
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4.3.2 Analytic Placement – Force-directed Placement

Input: set of all cells V
Output: placement P

P = PLACE(V) // arbitrary initial placement
loc = LOCATIONS(P) // set coordinates for each cell in P
foreach (cell c ∈ V)

status[c] = UNMOVED
while (ALL_MOVED(V) || !STOP()) // continue until all cells have been

//   moved or some stopping
//   criterion is reached

c = MAX_DEGREE(V,status) // unmoved cell that has largest 
//   number of connections

ZFT_pos = ZFT_POSITION(c) // ZFT position of c
if (loc[ZFT_pos] == Ø) // if position is unoccupied, 

loc[ZFT_pos] = c //   move c to its ZFT position
else

RELOCATE(c,loc) // use methods discussed next
status[c] = MOVED // mark c as moved 
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Finding a valid location for a cell with an occupied ZFT position 

(p: incoming cell, q: cell in p‘s ZFT position)

• If possible, move p to a cell position close to q.

• Chain move: cell p is moved to cells q’s location.

− Cell q, in turn, is shifted to the next position. If a cell r is occupying this space, 
cell r is shifted to the next position. 

− This continues until all affected cells are placed.

• Compute the cost difference if p and q were to be swapped. 
If the total cost reduces, i.e., the weighted connection length L(P) is smaller, 
then swap p and q.

4.3.2 Analytic Placement – Force-directed Placement
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Nets Weight
N1 = (b1, b3) c(N1) = 2
N2 = (b2, b3) c(N2) = 1

Given:

4.3.2 Analytic Placement – Force-directed Placement (Example)

b1 b3b2

0 1 2
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Incoming
cell p

ZFT position
of cell p 

L(P) 
before 
move

L(P) / placement
after move

b3 L(P) = 5

Cell q

b1

Nets Weight
N1 = (b1, b3) c(N1) = 2
N2 = (b2, b3) c(N2) = 1

Given:

∑
∑

≠

≠

⋅

=

0),(
3

0),(

0
3
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3

3

3 ),(

),(

jbc

jbc
j

b jbc

xjbc

x 0
12

1102
≈

+
⋅+⋅

=

4.3.2 Analytic Placement – Force-directed Placement (Example)

3 12L(P) = 5

⇒ No swapping of b3 and b1

b3 b1b2

b1 b3b2

0 1 2
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Incoming
cell p

ZFT position
of cell p 

L(P) 
before 
move

L(P) / placement
after move

b3 L(P) = 5

Cell q

b1 3 12

Nets Weight
N1 = (b1, b3) c(N1) = 2
N2 = (b2, b3) c(N2) = 1

Given:

b1 b3b2

0 1 2
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+
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= L(P) = 5

→ No swapping of b3 and b1

b3 b1b2

4.3.2 Analytic Placement – Force-directed Placement (Example)

b2 L(P) = 3L(P) = 5b3 b1 b2b3∑
∑
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→ Swapping of b2 and b3
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• Advantages:

− Conceptually simple, easy to implement 

− Primarily intended for global placement, but can also be adapted to detailed 
placement 

• Disadvantages:

− Does not scale to large placement instances 

− Is not very effective in spreading cells in densest regions 

− Poor trade-off between solution quality and runtime

• In practice, FDP is extended by specialized techniques for cell spreading 

− This facilitates scalability and makes FDP competitive 

4.3.2 Analytic Placement – Force-directed Placement
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4.3.3 Simulated Annealing

Time

Cost

• Analogous to the physical annealing process
− Melt metal and then slowly cool it 
− Result: energy-minimal crystal structure  

• Modification of an initial configuration (placement) by moving/exchanging 
of randomly selected cells 
− Accept the new placement if it improves the objective function
− If no improvement: Move/exchange is accepted with temperature-dependent 

(i.e., decreasing) probability
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Input: set of all cells V
Output: placement P

T = T0 // set initial temperature
P = PLACE(V) // arbitrary initial placement
while (T > Tmin)

while (!STOP()) // not yet in equilibrium at T
new_P = PERTURB(P)
Δcost = COST(new_P) – COST(P)
if (Δcost < 0) // cost improvement

P = new_P // accept new placement
else // no cost improvement

r = RANDOM(0,1) // random number [0,1)
if (r < e -Δcost/T) // probabilistically accept

P = new_P
T = α ∙ T // reduce T, 0 < α < 1 

4.3.3 Simulated Annealing – Algorithm 
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• Advantages:
− Can find global optimum (given sufficient time)
− Well-suited for detailed placement

• Disadvantages:
− Very slow
− To achieve high-quality implementation, laborious parameter tuning is necessary 
− Randomized, chaotic algorithms - small changes in the input 

lead to large changes in the output 

• Practical applications of SA: 
− Very small placement instances with complicated constraints 
− Detailed placement, where SA can be applied in small windows 

(not common anymore) 
− FPGA layout, where complicated constraints are becoming a norm 

4.3.3 Simulated Annealing
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4.3.3 Simulated Annealing

Time

Cost

• Analogous to the physical annealing process
− Melt metal and then slowly cool it 
− Result: energy-minimal crystal structure  

• Modification of an initial configuration (placement) by moving/exchanging 
of randomly selected cells 
− Accept the new placement if it improves the objective function
− If no improvement: Move/exchange is accepted with temperature-dependent 

(i.e., decreasing) probability
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• Predominantly analytic algorithms 

• Solve two challenges: interconnect minimization and cell overlap removal 
(spreading) 

• Two families: 

4.3.4 Modern Placement Algorithms

Quadratic placers
Non-convex 
optimization placers 
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• Solve large, sparse systems of linear equations (formulated 
using force-directed placement) by the Conjugate Gradient algorithm 

• Perform cell spreading by adding fake nets that pull cells away 
from dense regions toward carefully placed anchors 

4.3.4 Modern Placement Algorithms

Quadratic placers
Non-convex 
optimization placers
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• Model interconnect by sophisticated differentiable functions, 
e.g., log-sum-exp is the popular choice 

• Model cell overlap and fixed obstacles by additional (non-convex) functional 
terms 

• Optimize interconnect by the non-linear Conjugate Gradient algorithm 

• Sophisticated, slow algorithms 

• All leading placers in this category use netlist clustering to improve 
computational scalability (this further complicates the implementation) 

4.3.4 Modern Placement Algorithms

Quadratic placers
Non-convex 
optimization placers 
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Pros and cons: 

• Quadratic placers are simpler and faster, easier to parallelize 

• Non-convex optimizers tend to produce better solutions 

• As of 2011, quadratic placers are catching up in solution quality 
while running 5-6 times faster [1]

4.3.4 Modern Placement Algorithms

Quadratic 
Placement

Non-convex 
optimization placers 
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4.1 Introduction

4.2 Optimization Objectives

4.3 Global Placement
4.3.1  Min-Cut Placement
4.3.2  Analytic Placement
4.3.3  Simulated Annealing
4.3.4  Modern Placement Algorithms

4.4 Legalization and Detailed Placement

4.4 Legalization and Detailed Placement
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• Global placement must be legalized 
− Cell locations typically do not align with power rails 

− Small cell overlaps due to incremental changes, such as cell resizing or buffer 
insertion

• Legalization seeks to find legal, non-overlapping placements for all placeable 
modules

• Legalization can be improved by detailed placement techniques, such as
− Swapping neighboring cells to reduce wirelength

− Sliding cells to unused space

• Software implementations of legalization and detailed placement are often 
bundled 

4.4 Legalization and Detailed Placement
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4.4 Legalization and Detailed Placement

Power 
Rail Standard Cell Row

VDD

GND

Legal positions of standard cells between VDD and GND rails

INV NAND NOR
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Summary of Chapter 4 – Problem Formulation and Objectives  

• Row-based standard-cell placement 
− Cell heights are typically fixed, to fit in rows (but some cells may have double 

and quadruple heights) 
− Legal cell sites facilitate the alignment of routing tracks, connection to power 

and ground rails 

• Wirelength as a key metric of interconnect 
− Bounding box half-perimeter (HPWL) 
− Cliques and stars
− RMSTs and RSMTs 

• Objectives: wirelength, routing congestion, circuit delay 
− Algorithm development is usually driven by wirelength 
− The basic framework is implemented, evaluated and made competitive 

on standard benchmarks 
− Additional objectives are added to an operational framework 
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Summary of Chapter 4 – Global Placement   

• Combinatorial optimization techniques: min-cut and simulated annealing  
− Can perform both global and detailed placement 
− Reasonably good at small to medium scales 
− SA is very slow, but can handle a greater variety of constraints 
− Randomized and chaotic algorithms – small changes at the input can lead 

to large changes at the output 

• Analytic techniques: force-directed placement and non-convex optimization  
− Primarily used for global placement 
− Unrivaled for large netlists in speed and solution quality  
− Capture the placement problem by mathematical optimization 
− Use efficient numerical analysis algorithms 
− Ensure stability: small changes at the input can cause only small changes 

at the output 
− Example: a modern, competitive analytic global placer takes 20mins for global 

placement of a netlist with 2.1M cells (single thread, 3.2GHz Intel CPU) [1]
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Summary of Chapter 4 – Legalization and Detailed Placement    

• Legalization ensures that design rules & constraints are satisfied   
− All cells are in rows 
− Cells align with routing tracks 
− Cells connect to power & ground rails 
− Additional constraints are often considered, e.g., maximum cell density 

• Detailed placement reduces interconnect, while preserving legality   
− Swapping neighboring cells, rotating groups of three 
− Optimal branch-and-bound on small groups of cells 
− Sliding cells along their rows 
− Other local changes 

• Extensions to optimize routed wirelength, routing congestion and circuit timing 

• Relatively straightforward algorithms, but high-quality, fast implementation 
is important 

• Most relevant after analytic global placement, but are also used after min-cut 
placement 

• Rule of thumb: 50% runtime is spent in global placement, 50% in detailed 
placement  [1]
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