
Constraint Propagation Methods for Robust IC Design
Andreas Krinke∗, Goeran Jerke†, Jens Lienig∗

∗Dresden University of Technology, IFTE, Dresden, Germany, krinke@ifte.de, jens@ieee.org
†Robert Bosch GmbH, Automotive Electronics, Reutlingen, Germany, goeran.jerke@ieee.org

Abstract

Constraint engineering is one of the key enabling technologies to address robustness and reliability issues in today’s
IC designs. Design constraints are used to express and verify the customer’s demands and the designers’ intent. These
constraints put limits on some design object’s parameter values and, hereby, represent additional design information that is
then used to enforce robustness, reliability and other design targets. In hierarchical IC designs, the states of constraints
often depend on parameters of other design modules in the design hierarchy. Therefore, these constraints are propagated
within the design hierarchy to be considered when taking design decisions and performing design verification. This
propagation is an essential component of any robustness-, reliability- and constraint-driven design flow. To the best of
our knowledge, this is the first work that presents a systematic classification and detailed discussion of the constraint
propagation problem. Despite the vast number of conceivable constraint types, we found that there are only six different
propagation categories. We derived a single but generic constraint propagation algorithm for all six propagation categories.
Our work closes a critical automation gap in today’s constraint engineering flows by proving the full automatability of the
constraint propagation problem and by providing a comprehensive and consistent propagation solution. We also present
experimental results from an industrial design that demonstrate the applicability for large design problems.

1 Introduction

Constraint engineering is one of the key enabling technolo-
gies to address robustness and reliability issues in today’s
IC designs [1, 2, 3]. It comprises the management of de-
sign constraints (constraints), the active consideration of
constraints during design implementation (i.e., constraint-
driven design), and constraint verification. Constraints
hereby represent additional design information to express
and verify the customer’s demands and the designer’s intent.
A constraint itself represents an information entity that is
linked to design objects (e.g., cells, instances, nets, terminals
etc.) and to referring design parameters (e.g., electrical
resistance between terminals of a net, electrical potential
of a net, terminal current etc.). It represents additional
design information that is, among others, used to enforce
functional, cost, robustness and reliability targets, such as
max. chip area or guaranteed robust and reliable operation
for a given application mission profile. Design parameters
and corresponding constraints may occur in design domains,
such as the electrical, thermal, mechanical or physical
domain, depending on the design step and design context.
Other constraint examples include the maximum timing
delay between net terminals, the maximum IR-drop between
net terminals, mandatory local and global device instance
orientation, device parameter matching constraints, required
net shielding, distance between layout cells etc.
Formally speaking, constraints restrict the available design
space by applying limits to the set of possible design param-
eter values. Design parameters hereby belong to either a
local or a hierarchical design context. For instance, a design
parameter linked to the electrical resistance between two
given net terminals belongs to the local design context if
these net terminals are located in the same design cell. The

design parameter belong to a hierarchical design context if
the net terminals are located in different design cells that
form a design hierarchy. Constraint propagation provides
access to constraint-specific information, such as constraint
parameters, type and status, by marking all affected design
cells relevant to a particular constraint.
In case a design parameter’s value can be influenced in more
than one cell, then constraints on this parameter have to
be propagated into these cells in order to be applicable for
hierarchical design implementation and verification. The
propagation of constraints within the design hierarchy is
a key challenge for effective design implementation and
verification. Constraint propagation is also essential to any
automated and interactive reliability-, robustness- or other
constraint-driven design flow.
Due to the vast number of conceivable constraints and con-
straint types one could expect a large number of different
propagation methods, which then make a generic propaga-
tion solution highly improbable. Hence, finding a single
but generic propagation approach that provides an applica-
ble solution for the propagation of any arbitrary constraint
type would provide a profound benefit for any constraint
engineering tool.
Our work demonstrates that every constraint propagation
path depends only on the constraint’s own parameters and
its referenced design objects. Leveraging this key insight
allowed us to derive a categorization schema comprising six
fundamental constraint propagation methods (five of which
are shown in Fig. 1).
Our paper presents the first classification and detailed dis-
cussion of the constraint propagation problem. In addition,
we derive a single but generic constraint propagation al-
gorithm for all propagation categories. Any hierarchical
design constraint can now be propagated automatically using

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf ∙ 21. – 23.09.2015 in Siegen

ISBN 978-3-8007-4071-0 © VDE VERLAG GMBH · Berlin · Offenbach7

S P A T I A L A D J A C E N C Y

H
IE

R
A

R
C

HY
C ONN

E
C

T
I V

I T
Y

T
O

P
-D

O
W

N

BOT T O M - U P L O G I CAL

P
H

Y
S

IC
A

L

Constraint
Propagation

Figure 1 Overview of hierarchy-based, connectivity-based
and spatial-adjacency-based constraint propagation meth-
ods. Every constraint can be propagated using either a
combination of these methods, or global propagation.

a combination of these methods. Constraints thus become
visible and addressable in all relevant cells and can be taken
into account when making design decisions and verifying
the constraint compliance. Our work hereby closes a critical
automation gap in today’s constraint engineering flows by
proving the full automatability of the constraint propagation
problem and by providing a comprehensive and consistent
propagation solution.
After presenting related work in Section 2, a formal intro-
duction to constraints, a generic propagation algorithm and
constraint propagation classes are given in Section 3. Sec-
tion 4 presents a novel definition of constraint types. We
present experimental results that demonstrate the applica-
bility for large design problems in Section 5. Section 6
provides a summary and conclusion.

2 Related Work

Our work is based on a long history of research into con-
straints and their propagation. Back in 1988, Ly and Gir-
czyc [4] described constraint propagation as a method for
automatically updating cell parameters upon instantiation.
Then in 1992, Chang, Sangiovanni-Vincentelli, Balarin et
al.[5] examined the generation of layout constraints from
high-level electrical constraints and their subsequent top-
down propagation into cells further down the design hier-
archy. Three years later, Han, Stephanopoulos, and Dou-
glas [6] approached the problem using top-down propaga-
tion (described as inducing new constraints) and constraint-
value propagation between different abstraction levels. Later,
Malavasi, Charbon, Felt, and Sangiovanni-Vincentelli [7] de-
scribed top-down propagation and constraint transformation
for creating low-level parasitic constraints from high-level
performance specifications.

In 1998, Arsintescu [8] presented a hierarchical top-down
design method. Constraint transformation was used to create
low-level constraints from high-level ones in each hierarchy
level. Afterwards, these constraints were top-down propa-
gated to lower levels. His work also discussed classification
criteria for constraints, including a constraint’s level and
type, and its transformation function type. In the same year,
Malavasi, Charbon, Arsintescu, and Kao [9] outlined what
later became the constraint manager for Cadence DF II. Be-
sides top-down propagation for budgeting purposes, this
work also explained bottom-up propagation for rebudgeting.
In 2011, Jerke, Lienig and Freuer [2] classified constraints
in groups of technological, functional, design-methodical
and commercial constraints. A second categorization dis-
tinguished complex constraints (affecting dependent design
variables) and simple ones (affecting only independent vari-
ables). In addition to top-down and bottom-up propagation,
they explained bottom-up top-down propagation, e.g., for
connectivity-based propagation. In 2013, we presented a
pragmatic approach to constraint propagation [10]. With-
out a classification of constraint propagation, we had to use
type-specific transformation functions. Their formulation
proved to be laborious given the vast number of constraint
types. Katzschke et al. [11] extended our constraint model.
Each constraint type is tied to a specific design tool in
order to support cross-domain constraints. In addition, a
constraint may comprise a set of child constraints—in other
words, a set of constraints may be integrated into a single
new constraint. Jerke and Kahng [12] discussed robustness
aware design of automotive ICs using automated generation,
transformation, propagation and usage of functional loads
and environmental conditions, which may be considered as
constraints as well. Recently, Crepaldi, Grosso, Sassone et
al. [13] discussed a design methodology for smart systems
that utilizes top-down constraint propagation.
To the best of our knowledge, no research has been carried
out and published to date that presents a classification of
constraint propagation methods or a unified and generic
propagation approach.

3 Classification of
Constraint Propagation

3.1 Introduction
Formally speaking, a constraint is a requirement on the
values of one or more design parameters. These parameters
form the constraint’s target parameters. A constraint c
can be formulated as a function of design parameters c :
X → B that returns the constraint’s state (“satisfied” or
“violated”) as a Boolean value. Therefore, its codomain is
B = {True, False}. Arguments of c are tuples of design
parameter values. Accordingly, the domain X contains all
possible tuples of parameter values for c.
Each constraint belongs to a specific design cell that provides
its local context. A constraint may reference only design
parameters that belong to its context. As each parameter is
associated with one or more design elements, these elements
have to be part of the context cell as well. This requirement
is met if the element is located in the context cell itself or

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf ∙ 21. – 23.09.2015 in Siegen

ISBN 978-3-8007-4071-0 © VDE VERLAG GMBH · Berlin · Offenbach8

Design Parameter Propagation

Based on Instantiation
Top-Down

Bottom-Up

Based on Connectivity
Logical

Physical

Based on Spatial Adjacency

Global Propagation

Figure 2 Classification of design parameter propagation.
The propagation of a constraint may require different types
depending on its target design parameters.

in any instance within this cell. Examples for such design
elements are instances, cell and instance pins, nets, polygons
and the context cell itself. The members of a constraint are
those design elements that are associated with its parameters.
A constraint is denoted as local constraint if it references
design parameters of its context cell only. A constraint is
denoted as hierarchical constraint if it references at least one
design parameter of an instance that is hierarchically below
the context cell. Parameters of instances hierarchically above
the context cell may not be referenced, because these upper
hierarchy levels differ with each instance of the context cell.
This is only possible using constraint generation methods.
A constraint is denoted as complex constraint if it limits
multiple design parameters at once.
A hierarchical IC design can be modelled as hierarchical
design graph that contains a node for every cell of the design.
If one cell C1 contains an instance of another cell C2, an edge
C1→C2 is added to the graph. In contrast, a flat design graph
contains no intermediate hierarchy levels. Instead, every
global instance, i.e., every possible path from the topcell to
a cell at the lowest hierarchy level in the hierarchical design
graph, is modelled as a separate instance node. Edges then
relate the topcell node with every instance node.
Each constraint has to be propagated into all cells, whose
implementation may affect the constraint’s status. Due to
the vast number of conceivable constraints and constraint
types one could easily assume that there is also a large
number of different propagation methods. Through analysis
of constraint types, we found that the set of target design
parameters of a constraint or constraint type is here the only
decisive classification criterion for its propagation within
the design hierarchy. The modality used to construct this
set of relevant cells hereby depends on the type of design
parameter. As discussed in detail in Sections 3.3–3.6, we
identified the following different constraint propagation
categories (cf. Fig. 2):

• Propagation based on instantiation (top-down and
bottom-up)

• Propagation based on connectivity (logical and physi-
cal)

• Propagation based on spatial adjacency
• Global propagation

1: procedure PropagateConstraint(c,G)
2: C ← Context(c)
3: for each parameter p ∈ Parameters(c) do
4: M ←Members(p)
5: S ← PropagationSequence(p)
6: for each member m ∈ M do
7: R← {G} // Initially, all cells are relevant.
8: for each propagation type t ∈ S do
9: // Call type-specific propagation function.

10: R← Propagatet (c,C,m,G, R)
11: end for
12: for each subgraph H ∈ R do
13: for each relevant cell r ∈ H do
14: Mark(r, c, p,m, H) // Mark relevant cell.
15: end for
16: end for
17: end for
18: end for
19: end procedure

Figure 3 Our generic constraint propagation algorithm.
Input data are the constraint c and the hierarchical design
graph G containing all relevant design elements. In lines 2,
4 and 5 the required information about the constraint and
its target parameters are retrieved. The set R stores one or
more subgraphs of G containing all cells with relevance
for the constraint’s status. Propagation type t is one of:
top-down, bottom-up, based on logical connectivity, based
on physical connectivity, based on spatial adjacency or
global propagation (cf. Sections 3.3–3.6).

Each constraint can be propagated by implementing meth-
ods for each of these propagation categories. Complex
constraints may require the use of multiple different propa-
gation methods, depending on their set of target parameters.

3.2 Generic Propagation Algorithm
Based on the insight that propagation of a constraint depends
only on its set of target parameters, we were able to derive
a generic mechanism to propagate all constraints with a
single high-level propagation algorithm (see Fig. 3). When
propagating a constraint, this algorithm processes each target
parameter independently. For each parameter, the set of
associated design elements and its propagation sequence S
are retrieved. This sequence depends only on the parameter
type and defines what propagation methods have to be
executed. Most design parameters can be propagated using
just a single propagation method. In this case, S contains
only this method. Only parameters that require combined
propagation (cf. Section 3.7) result in S containing more
than one propagation method.
For each type t of the six propagation types described
in the remainder of this section, a separate propagation
function Propagatet is required. The actual propagation is
performed for each associated design element of the current
parameter separately. The propagation methods in S are
executed, each returning one or more subgraphs of the
design graph. These subgraphs represent sets of relevant
cells and can be refined by subsequent propagation methods

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf ∙ 21. – 23.09.2015 in Siegen

ISBN 978-3-8007-4071-0 © VDE VERLAG GMBH · Berlin · Offenbach9

in S. Finally, all relevant cells with potential influence on
the value of the current parameter are marked. Therefore,
line 14 forms the result of constraint propagation.
As an example, the propagation of a constraint that limits the
distance between two instances is described in the following.
In this case, the distance is the only design parameter with the
two instances as its associated design elements (members).
For this particular parameter type, bottom-up propagation
is the only required propagation method (as explained later).
Therefore, bottom-up propagation is performed for each
instance. Propagation finishes after marking the resulting
relevant cells.
The constraint propagation categories are discussed in detail
in the remainder of this section.

3.3 Propagation Based on Instantiation
The first propagation class applies to all design parameters
whose value depends only on properties of parental cells
higher up in the hierarchy, or of instantiated cells further
down the hierarchy.

3.3.1 Top-Down Propagation
Each hierarchical cell in a design contains instances of
other cells. All parameters of a cell whose value can
be influenced by modifying these subordinate cells enforce
top-down propagation of associated constraints. Examples
of parameter types requiring top-down propagation include
power consumption and area of a cell. Formally, this applies
to every parameter pC of some cell C, whose model depends
only on the values of the exact same parameters of instances
I1, I2, . . . , In within C:

pC = f (pI1, pI2, . . . , pIn) (1)

This causes recursive propagation, because the parameter
value of such an instance depends, again, on the parameter
values of containing instances. Therefore, the corresponding
top-down propagation method Propagatetd returns a single
subgraph rooted in C. This graph includes all cells that are
instantiated in any hierarchy level below C. The subgraph
and, therefore, the set of relevant cells is independent of the
number of context cell instances in the design.
From a data modeling perspective, fast access to the cells
that are instantiated in a given cell is required for efficient
top-down propagation.

3.3.2 Bottom-Up Propagation
Layout parameters, e.g., global positions, alignment or
orientations of instances in the circuit layout, are target
parameters of the important group of layout constraints. The
values of these parameters can be modified in cells higher
up in the design hierarchy. Moving or rotating an instance
in one of these parental cell layouts results in a change in
these layout parameters for all instances further down in
the hierarchy. Therefore, constraints on such parameters
require bottom-up propagation. Formally, this applies to
every instance parameter pI , whose value can be expressed
using only the value of the exact same parameter of its
immediate parental instance IP :

pI = f (pIP) (2)

C7 C8

C4 C6 C5

C2 C3

C1
I1 I2

I1
I2

I1
I2

I1 I2

Member
(a)

C7 C8

C4 C6 C5

C2 C3

C1
I1 I2

I1
I2

I1
I2

I1 I2

Member
(b)

Figure 4 Exemplary design hierarchy including a con-
straint in cell C6 on a bottom-up propagated parameter of
instance I1. Because the top cell C1 contains two instances
of C6 (one in C2 and the other in C3), bottom-up propaga-
tion yields two sets of relevant cells (marked by dark nodes
in (a) and (b), respectively). Therefore, after propagation,
changes to C2 and C3 will have to consider one propagated
constraint, while two propagated constraints limit modifica-
tions of C1.

For example, the global position of an instance depends
on the global position of its parental instance. Again, this
causes recursive propagation which does not stop until a
top-level cell is reached. A constraint’s context cell and the
number of instances of that cell have major implications for
propagation (as opposed to top-down propagation). Fig. 4
illustrates that each instance of the context cell in the design
has a different set of parental instances. Therefore, multiple
sets of relevant instances exist for such a constraint, one for
each global instance of its context cell. The propagation
method Propagatebu returns multiple subgraphs rooted in
top-level cells.
From a data modeling perspective, fast access to the parental
instances of a given global instance is required for efficient
bottom-up propagation.

3.4 Propagation Based on Connectivity
Constraints on parameters whose values depend on the
electrical connection of a given pin or net, have to be
propagated based on connectivity. We distinguish two
types, depending on the type of connectivity that influences
a parameter’s value: logical or physical connectivity.

3.4.1 Propagation Based on Logical Connectivity
Parameters such as the load capacitance of a net and ESD
protection of a pin are influenced by instances that are logi-
cally connected. Therefore, constraints on such parameters
are propagated based on logical connectivity. Formally, this
applies to every pin or net parameter pN , whose value de-
pends only on the values of the exact same parameter of
logically connected instances ILC1, ILC2, . . . , ILCn :

pN = f (pILC1, pILC2, . . . , pILCn) (3)

Again, this definition results in recursive propagation that
only stops at instances of basic cells at the lowest hierar-

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf ∙ 21. – 23.09.2015 in Siegen

ISBN 978-3-8007-4071-0 © VDE VERLAG GMBH · Berlin · Offenbach10

chy level. The propagation method Propagatelc returns
multiple subgraphs, one for each global instance of the con-
straint’s context and each containing all logically connected
instances.
For efficient propagation based on logical connectivity, the
data model should allow fast access to all instances of these
basic cells that are connected to a net or pin. Therefore, a
flat design graph without intermediate hierarchy levels is
recommended.

3.4.2 Propagation Based on Physical Connectivity
It is important to differentiate between the set of instances
that are connected to a given net or pin, and the set of
instances whose layouts implement this connectivity. While
the former is derived from logical connections defined
in the schematic hierarchy, the latter is defined by the
layout hierarchy. The set of instances that contribute to
an electrical connection may differ between schematic and
layout hierarchies.
Parameters, whose value depends on the physical imple-
mentation of an electrical connection have to be propagated
based on this physical connectivity. They have to be visible
in all instances that implement or may implement parts of
this connectivity. Examples include parasitic resistance and
capacitance of a net. Formally, this applies to every pin or
net parameter pN , whose value depends only on parameters
qPC1, qPC2, . . . , qPCn of the layout shapes implementing the
connectivity:

pN = f (qPC1, qPC2, . . . , qPCn) (4)

Again, the propagation method Propagatepc returns a sub-
graph for each global instance of the constraint’s context.
Each subgraph contains all instances that either implement
or overlap parts of the connectivity’s layout shapes.
Fast access to all layout shapes implementing an electri-
cal connection and to the cell layouts they belong to are
requirements for efficient propagation based on physical
connectivity. As for logical connectivity, a flat design graph
is the recommended starting point.

3.5 Propagation Based on
Spatial Adjacency

Layout structures neighboring or overlapping an instance on
the die may influence its parameters. In that case, constraints
on these parameters have to be propagated based on spatial
adjacency in the layout. This applies to, e.g., (matching)
coverage, no overlap, and cluster constraints, where the
bounding polygon of a set of instances must not contain
other instances. Formally, this propagation type is used
for constraints on parameters whose values depend only on
layout elements within a certain distance.
For example, a coverage constraint might dictate that an
instance is covered by a specific layer, e.g., the top metal layer.
These metal shapes can be created in any instance whose
bounding box overlaps with the one of the first instance.
As a consequence, this constraint has to be propagated into
all these cells. For each global instance of the constraint’s
context, the propagation method Propagatesa computes a
global bounding polygon for the set of parameter members.

Then, for each bounding polygon, a subgraph containing all
overlapping instances is returned.
A flat design graph with fast access to instances overlapping
a given polygon is recommended for efficient propagation.

3.6 Global Propagation
There are design parameters whose values can potentially
change when any cell in the design is modified. An example
is the parameter “set of required layers”. This parameter
is a property of cells and impacts both their fabrication
cost and the set of devices that may be used for their
implementation. For a cell, whose layout requires a special
layer, a constraint for this parameter can represent this
information. When this cell is subsequently instantiated,
the constraint will be propagated globally into all other
cells. Therefore, the information on availability of this
special layer is available everywhere. The propagation
method Propagateg maintains a list of constraints with
global relevance and returns no subgraph.

3.7 Combination of Propagation Methods
A very large number of design parameters triggers exactly
one of the six propagation methods described earlier. How-
ever, there are parameters that need more than one of these
methods to be executed. In this case, the first propagation
method produces a subset of the design which is then further
processed by all subsequent methods.
An example for this behavior is the class of net shielding
constraints. When applied to a pin or net, such a constraint
requires the layout implementation of all electrically con-
nected shapes to be shielded. Its propagation requires two
steps: First, propagation based on physical connectivity
identifies all shapes that connect to the pin or net in the lay-
out. Second, propagation based on spatial adjacency finds
all instances, whose layout overlaps some of these shapes.
The shielding shapes have to be created in a subset of these
instantiated cells. Another example is a cell’s internal re-
sistance between two of its terminals. This parameter is of
special interest for the design of power stages [10]. When
processing constraints on such a parameter, the first step
is finding all internal instances using top-down propaga-
tion. Thereby, all instances outside the cell are ignored.
Finally, propagation based on logical connectivity identifies
all internal instances that may influence this resistance.
The computation of relevant cells for a single member of
one of a constraint’s parameters is visualized in Fig. 5. After
propagation, all relevant cells are marked in the database.
If a user opens any marked cell, all constraints that marked
the cell are displayed and can be considered during editing.

3.8 Influence of Constraint Context on
Propagation

While the set of target parameters implies the propagation
mechanisms of a constraint, the constraint context greatly
impacts the reach of propagation. As explained earlier, the
context of a constraint is defined by the cell in which it was
created. Besides restricting the addressable design elements,
the choice of context also has a critical bearing on how well

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf ∙ 21. – 23.09.2015 in Siegen

ISBN 978-3-8007-4071-0 © VDE VERLAG GMBH · Berlin · Offenbach11

Instantiation

Connectivity

Adjacency
Input Graph Subgraph(s)SubgraphSubgraphs

Combined Propagation

Figure 5 When applied to the design graph, all types of
propagation create one or more subgraphs with all relevant
cells. Combined propagation causes iterative processing of
this set of subgraphs by the same propagation methods.

C5 C6

C4

C3C2

C1
I1 I2

I1 I2

I1 I2
Member

(a)

C1

C2

C3 C4

C5 C6
C5

C6

(b)

Figure 6 Exemplary design hierarchy (a) and correspond-
ing hierarchical floorplan (b). Depending on the designer’s
intent, a parameter of instance I1 in cell C4 can be con-
strained in the context of either C4, C3 or C1 (marked with
dashed lines). A constraint in context C4 applies to both
of its instances in C3. However, if the constraint is created
in C3 or C1, only one of the two instances is affected. In
this case, one instance of C4 in C3 has to be chosen when
defining the constraint’s target parameter.

the constraints reflect the designer’s intent. The context
defines which cell and, therefore, which instances the con-
straint targets. Fig. 6 shows an example for a constraint
on a parameter of some instance. This constraint could be
created in the context of any cell higher up in the design
hierarchy. Because the restriction applies to all instances of
that cell, the search for relevant cells during constraint prop-
agation examines each of these instances individually (cf.
instantiation-based propagation in Section 3.3.3). Therefore,
the context has great influence on the set of relevant cells
and, thus, on the result of constraint propagation. However,
it is important to note that a constraint’s context is not a cri-
terion for determining applicable propagation mechanisms.

4 Constraint Types
4.1 Constraint Representation Using

Ordered Trees
The functional definition of constraints allows the creation
of an infinite number of different constraints. While there
are no restrictions on the structure of constraint function c,
current literature provides a large list of about 350 global

>

Distance

i1 i2

∗

k +

∗

w1
Power

Consumption

i1

∗

w2
Power

Consumption

i2

Operation

Design
Parameter
Constraint
Parameter
Design
Element

Figure 7 An ordered tree representing the constraint in
Eq. (5). Dependencies of design parameters on design
element properties are depicted with dotted arrows.

constraints that can be used as building blocks [14]. For
practical purposes, it is essential to categorize constraints
into different types in order to manage their diversity. This
classification requires a more structured constraint represen-
tation to increase the scope of the general formulation. We
propose to represent constraint functions as ordered trees.
Each mathematical operation that is required to calculate the
constraint function becomes a node in the tree. Arguments
for these operations, i.e., values of design and constraint pa-
rameters or the result of nested operations, become children
of the corresponding node. Thereby, the tree expresses the
dependencies between operations and parameters and the
order in which they are calculated. By starting at the leaf
nodes and calculating the result of all operations while going
up the tree, the value of the constraint function is evaluated
once the root node is reached. An exemplary constraint on
the minimal distance between two instances depending on
their respective power consumption is shown in Eq. (5):

Distance(i1, i2) > k ·
(
w1 · PowerConsumption(i1)

+w2 · PowerConsumption(i2)
)

(5)

This specific constraint has three parameters k, w1, w2 and
applies to two instances i1, i2 in the design. The values of
the constraint parameters, as well as its members i1 and i2
need to be specified when the constraint is created. The
corresponding ordered tree is shown in Fig. 7.

4.2 Constraint Type Definition
Constraints can be categorized according to the structure
of the constraint function as described by its ordered tree.
Therefore, we define a constraint type using a pattern
tree—an ordered tree whose nodes are annotated with quan-
tifiers that define how often each subtree may occur. Similar
to quantifiers in regular expressions, one can specify that
nodes have to occur zero or more times; one or more times;
or at least m, and not more than n, times. A constraint type’s
pattern tree describes the (possibly infinite) set of all or-
dered trees, and, therefore, of all constraint functions that
are of this type. Besides being a blueprint for creating con-

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf ∙ 21. – 23.09.2015 in Siegen

ISBN 978-3-8007-4071-0 © VDE VERLAG GMBH · Berlin · Offenbach12

straints of a certain type, arbitrary constraint functions can
be categorized with pattern trees.
The state of a constraint depends on the values of deployed
(target) design parameters, which, in turn, depend on de-
sign element properties. These design elements become the
members of the constraint. For example, the Distance pa-
rameter and, thereby, the constraint’s state in Eq. (5) depend
on the layout positions of two instances i1, i2. Therefore,
if the Distance parameter is deployed, the constraint must
have two members of type “instance”.

5 Experimental Results

In order to demonstrate the feasibility of our presented
constraint propagation approach, we applied all presented
constraint propagation methods to an industrial automotive
mixed-signal IC design. The used IC design comprises 413
analog and digital design cells in 11 levels of design hierarchy
resulting in 972,539 instances of the flattened design.
Our presented constraint propagation approach is generally
applicable to any representation of design data. However, we
used a graph data model and a graph database to represent
the design data incl. instances, nets, terminals etc. [15].
The usage of a graph database has the distinct advantage
that propagation algorithms can be implemented and tested
easily. The used graph database was accessible from the
commercial design framework Cadence Virtuoso® through
a SKILL++ based data interface.
At the beginning of our test, the IC design data (incl. con-
straint data) of the design framework was initially exported
to the graph database and then kept in sync. The constraint
propagation of all defined constraints was then initiated. The
propagation results were first written to the graph database
and then synced with the design framework’s database.
Based on our findings, we implemented 9 constraint types,
one for each of the following design parameters:

• Top-down propagation: cell area, power consumption
• Bottom-up propagation: instance position, instance

orientation
• Connectivity-based propagation: net load capacitance
• Spatial-adjacency-based propagation: no polygon over-

lap, polygon coverage
• Combined propagation: pin-to-pin resistance, net

shielding

For each constraint type, several constraints were created
with different context cells and varying target design ele-
ments. After automatic propagation, we verified the correct
marking of all relevant cells. This verification was carried
out using manual graph database queries to inspect all cells
marked as relevant and their relation to the original con-
straint’s context cell. As a result, all relevant cells were
correctly identified for all constraints. Afterwards, when
opening a relevant cell, a complete list of those constraints,
whose status can be influenced in this cell, was available.
The overall algorithmic complexity of our approach depends
on the constraint’s structure, i.e., the number of affected
design parameters, their propagation sequence and their set
of members. Almost all design parameters we examined

did not require combined propagation and had only a small
number of members, which is beneficial for runtime. There-
fore, our method’s complexity depends primarily on the
efficiency of the four basic propagation methods. However,
their efficiency in determining relevant cells is strongly tied
to the modeling of design data [15]. For the used graph data
model and the example circuit, for example, iterating over
all 972,539 instances below the top-level cell—as required
for top-down propagation—takes about 2.3 s using an 2.4
GHz Linux workstation. However, data modeling itself is
beyond the scope of this paper, so please refer to [15] for
more details.
It is important to note that the cost of constraint propagation
only incurs on constraint creation and when relevant cells
are modified. Later on, during the design process, listing all
constraints with relevance for a cell is very fast and happens
virtually instantaneously.

6 Summary and Conclusion

The constraint propagation problem is of tremendous practi-
cal importance for constraint engineering and its application
to industrial IC designs. Propagation of constraint informa-
tion throughout the design hierarchy allows well-grounded
design decisions and design verification. It is an essential
component of any robustness-, reliability- and constraint-
driven design flow. To the best of our knowledge, this is
the first work that presents a systematic classification and
detailed discussion of the constraint propagation problem.
We identified six generic propagation categories that cover
all constraint types. As a result, we developed a single but
generic constraint propagation algorithm for all propagation
categories, which now allows for an easy and consistent in-
tegration into existing constraint-driven design tools and IC
design frameworks. Our experimental results demonstrate
the applicability for large industrial design problems.

Acknowledgment

The authors would like to thank the anonymous reviewers
for their helpful suggestions and comments on this paper.

References

[1] R. A. Rutenbar, “Design Automation for Analog: The
Next Generation of Tool Challenges,” in Proc. Int’l
Conf. on CAD, San Jose, CA, USA, 2006, pp. 458–460.

[2] G. Jerke and J. Lienig, “Constraint-driven Design –
The Next Step Towards Analog Design Automation,”
in Proc. Int’l Symp. on Phys. Design, San Diego, CA,
USA, 2009, pp. 75–82.

[3] J. Scheible and J. Lienig, “Automation of Analog IC
Layout – Challenges and Solutions,” in Proc. Int’l
Symp. on Phys. Design, Monterey, CA, USA, 2015,
pp. 33–40.

[4] T. Ly and E. Girczyc, “Constraint Propagation in an
Object-Oriented IC Design Environment,” in Proc.

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf ∙ 21. – 23.09.2015 in Siegen

ISBN 978-3-8007-4071-0 © VDE VERLAG GMBH · Berlin · Offenbach13

25th Design Autom. Conf., Anaheim, CA, USA, 1988,
pp. 628–633.

[5] H. Chang, A. Sangiovanni-Vincentelli, F. Balarin et al.,
“A Top-Down, Constraint-Driven Design Methodology
for Analog Integrated Circuits,” in Proc. IEEE Custom
Integr. Circuits Conf., Boston, MA, USA, 1992, pp.
841–846.

[6] C. Han, G. Stephanopoulos, and J. M. Douglas, “Au-
tomation in Design: The Conceptual Synthesis of
Chemical Processing Schemes,” in Intelligent Sys-
tems in Process Engineering, Part I: Paradigms from
Product and Process Design, ser. Advances in Chemi-
cal Engineering, G. Stephanopoulos and C. Han, Eds.
Academic Press, 1995, vol. 21, pp. 93–146.

[7] E. Malavasi, E. Charbon, E. Felt, and A. Sangiovanni-
Vincentelli, “Automation of IC Layout with Analog
Constraints,” IEEE Trans. Comput.-Aided Design In-
tegr. Circuits Syst., vol. 15, no. 8, pp. 923–942, Aug.
1996.

[8] B. Arsintescu, E. Charbon, E. Malavasi, and W. Kao,
“AC Constraint Transformation for Top-down Analog
Design,” in Proc. Int’l Symp. on Circuits and Systems,
vol. 6, Monterey, CA, USA, 1998, pp. 126–130.

[9] E. Malavasi, E. Charbon, B. Arsintescu, and W. Kao,
“A Constraint Management System for IC Physical
Design,” in Proc. 11th Brazilian Symp. on Integr.
Circuit Design, Búzios, Rio de Janeiro, Brazil, 1998,
pp. 240–243.

[10] A. Krinke, M. Mittag, G. Jerke, and J. Lienig, “Ex-
tended Constraint Management for Analog and Mixed-
Signal IC Design,” in Proc. 20th European Conf. on
Circuit Theory and Design, Dresden, Germany, 2013.

[11] C. Katzschke, M.-P. Sohn, M. Olbrich, V. Meyer
zu Bexten, M. Tristl, and E. Barke, “Application of
Mission Profiles to Enable Cross-Domain Constraint-
Driven Design,” in Proc. Design, Autom. and Test in
Europe, Dresden, Germany, 2014.

[12] G. Jerke and A. B. Kahng, “Mission Profile Aware IC
Design – A Case Study,” in Proc. Design, Autom. and
Test in Europe, Dresden, Germany, 2014.

[13] M. Crepaldi, M. Grosso, A. Sassone et al., “A Top-
Down Constraint-Driven Methodology for Smart Sys-
tem Design,” IEEE Circuits Syst. Mag., vol. 14, no. 1,
pp. 37–57, 2014.

[14] N. Beldiceanu, M. Carlsson, and J.-X. Rampon,
“Global Constraint Catalog,” Swedish Institute of
Computer Science (SICS), Kista, Sweden, Tech. Rep.
T2010:07, Nov. 2010.

[15] A. Krinke, G. Jerke, and J. Lienig, “Adaptive Data
Model for Efficient Constraint Handling in AMS IC
Design,” in Proc. 20th Int’l Conf. on Electronics,
Circuits, and Systems, Abu Dhabi, UAE, 2013, pp.
285–288.

GMM-Fachbericht 83: Zuverlässigkeit und Entwurf ∙ 21. – 23.09.2015 in Siegen

ISBN 978-3-8007-4071-0 © VDE VERLAG GMBH · Berlin · Offenbach14

