
Adaptive Data Model for Efficient
Constraint Handling in AMS IC Design

Andreas Krinke∗ Goeran Jerke† Jens Lienig∗
krinke@ifte.de goeran.jerke@ieee.org jens@ieee.org
∗Dresden University of Technology, Dresden, Germany

†Robert Bosch GmbH, Reutlingen, Germany

Abstract—Further automation of analog and mixed-signal
integrated circuit design requires the consideration of a growing
number of design constraints. The processing of these constraints
needs specific design information and depends on their target
parameters and the type of mathematical requirement. Both
aspects allow the creation of numerous different constraint types
with many demands on the available design data. This paper
presents a data model for AMS IC designs that is based on
a static model for common design data. In order to store all
information necessary for utilized constraint types, this model
dynamically adapts and extends its internal structure. Thereby,
our data model does not limit the set of supported constraint
types and allows uniform access to design and constraint data
for constraint-driven algorithms. We preserve the graph nature of
our data model by using a graph database for its implementation.
Thus, constraint engineering becomes much faster compared to
conventional static data models.

I. INTRODUCTION

The design of analog and mixed-signal integrated circuits
(AMS ICs) requires the consideration of a large number of
design constraints. Many different types of constraints exist
that vary in their properties and in the way they need to be
handled. Examples include symmetry, alignment and orientation
constraint types used to ensure device matching. Depending
on an IC’s application, e.g., for automotive, sensor, or smart
power products, adapted sets of constraint types are used. Each
design step should incorporate all relevant constraints to create
valid results. Due to the difficult and distinct handling of these
numerous constraint types, this problem is one of the main
reasons for the lack of automation and thereby the dominance
of manual tasks in AMS IC design [1], [2]. The comparison
with sophisticated algorithms for digital design automation
emphasizes this point. Hence, a data model that adapts to the
requirements of constraint types eliminates one of the main
obstacles towards the long awaited automation in AMS design.

Constraint types define classification criteria used to group
constraints into classes. These criteria include the affected
design parameters (e.g. symmetry, resistance or shielding) and
the semantics of the constraints’ restriction (e.g. matching
or limiting the values of these parameters). Constraints of
the same type share methods for their verification and prop-
agation throughout the design hierarchy. A constraint type
also specifies the information needed to complete these steps,
such as the set of design element properties whose values
influence verification. Potentially, the application of various
design tools from different vendors is required to gather all
required data [3]. One possibility would be to include this
data collection in each algorithm. This approach has the
disadvantage that information cannot be reused by different
algorithms or for multiple executions of the same algorithm;

This work was supported by the German Ministry of Education and Research
(BMBF) under grant 01M3195B.

it has to be reacquired in these cases. In our opinion, storing
required information in a common database is a better approach
and provides both data persistence and sharing. Furthermore,
this data abstraction provides uniform data representation as
well as identical access to the information of different tools,
thereby greatly simplifying algorithm development. Finally,
if the constraint data model is integrated with the model for
(not constraint-related) design data, algorithms can access both
types of data in the same way. Nevertheless, for such a shared
database, the underlying data model has to support information
with arbitrary structure, not necessarily known in advance. As
a consequence, the data model needs to adapt to this kind of
data.

It is important to note that the approach presented in this
paper applies equally well to multi-domain design data and
related cross-domain constraints (e.g. for chip-package-board
co-design). Due to space limitations, this paper focuses on the
IC design domain.

A. State of the Art
Proprietary databases of common EDA software tools for

AMS circuit design use static data models for design and
constraint data. While the addition of new custom constraint
types is typically supported, required information either has
to be collected repeatedly during each algorithm execution or
stored using a custom data model and separated from design
data. In these cases, both databases need to be synchronized.

Over the past few years, the OpenAccess (OA) database
was adopted as replacement for proprietary databases in many
EDA software tools [4]. Its data model can be extended with
new object types and properties (see [5]), but their integration
is purely application-specific. For example, the system does
not support queries based on extended data. In addition, OA’s
data model is confined to IC design data.

B. Our Contributions
In this paper, we present a novel adaptive data model for

design and constraint data as well as for related information
needed to handle the constraints. This model provides algo-
rithms with uniform data access regardless of whether or not
they consider constraints. IC design data is highly connected
because cell instantiations and constraints may create nearly
arbitrary links between database objects. Therefore, we found
graph databases to be very well suited for data storage. They
allow much shorter query times compared to other types of
databases, for instance relational ones, that are not optimized for
such highly connected data. We implemented our data model
using such a graph database and interfaced it with a commercial
EDA software tool. The database provides uniform data access
using a built-in graph query language. Finally the whole system
was applied to several large industrial smart power IC designs
to show its practical benefits.

Andreas Krinke
Schreibmaschinentext
© IEEE 2013. This is the author's version of the work. It is posted here by permission of IEEE for your personal use. Not for redistribution. The final version was published in the Proceedings of the 20th IEEE International Conference on Electronics, Circuits and Systems (ICECS 2013), pp. 285-288, Abu Dhabi, UAE, December 2013.

Andreas Krinke
Schreibmaschinentext

Andreas Krinke
Schreibmaschinentext

Andreas Krinke
Schreibmaschinentext

Andreas Krinke
Schreibmaschinentext



DESIGN

LIBRARY

last modified:int

CELL

last modified:int

VIEW

view type:String
last modified:int

TERMINAL

direction:String
bus width:int

NET

signal type:String
bus width:int

INSTANCE

CONSTRAINT

CONSTRAINT TYPE

PARAMETER

description:String

∗ LIBRARY∗

1 CELL∗

1 VIEW∗

∗

INSTANCE

∗

1
NET

∗

0..1
TERMINAL

∗

0..1
PIN
∗

0..1
TERMINAL

∗

1 INSTANCE

∗ ∗

1 MASTER

0..1
TERMINAL
∗

1
∗

CONSTRAINT

∗ TYPE1

∗

∗

PARAMETER

default value

∗ ∗PARAMETER

default value

∗

MEMBER
id, path, order∗

∗ PARAMETER

∗

value

∗
PARAMETER

∗

default value

∗
PARAMETER

∗

value

∗

MEMBER
id, path, order

∗
∗∗ cf. Figure 4a

cf. Figure 2

Figure 1. Graph describing valid nodes and relationships for the static part of our model for logical (schematic) data. It expands on traditional data models to
include constraint types, constraints and their members, and a separate concept for parameters [6]. Most importantly, this model can adapt to information demands
using mandatory and optional data model extensions (cf. Section III-D). Included are node and relationship parameters in lower case and names of relationships
in upper case. The potential numbers of relationships starting or ending in a node are noted at the end or start of the respective arrow. Every node in the model
has a string property name which was omitted for brevity.

II. CONSTRAINTS AND CONSTRAINT TYPES

The common hierarchical design approach breaks circuits
into cells that may be reused multiple times in a design [6].
Modern software tools organize these cells in libraries and
distinguish different views of each cell, e.g., symbol, schematic
and layout views. Constraints belong to a specific schematic
or layout view. They limit the allowed values of specific
design element parameters and need to be fulfilled for design
closure. The affected design elements (e.g. instances or nets)
are the members of the constraint. Two types of members
exist: (1) local members belonging to the same cell view
as the constraint itself and (2) hierarchical members that
belong to some instance further down in the design hierarchy.
Unambiguous identification of such hierarchical members is
based on the exact list of instances one has to traverse when
going from the constraint’s cell to the member. This path
i1/i2/ . . . /in/e starts in the view associated with the constraint,
descends into instances according to the sequence i1, i2, . . .,
in, and finally arrives at a design element e. For configuration
purposes, constraints itself may have general and/or per-member
parameters. Depending on the compatible design elements,
affected parameters and the semantic of the restriction, different
types of constraints can be identified. As a consequence,
constraint types define how to process derived constraints. In
addition to constraint verification, this includes propagation,
i.e., their spreading throughout the design hierarchy into all
cells with relevance to the constraint [7].

The diversity of possible constraint types is caused by the
large number of parameters in AMS designs on the one hand,
and the set of potential restrictions on the other. To illustrate
this point, current literature lists about 354 such restrictions [8].
Algorithmic consideration of these numerous constraint types
often requires additional information about the design. For
example, algorithms that obey floorplanning constraints on
the position, orientation and alignment (relative position) of

instances need to have access to the respective parameters of
all relevant instances.

We propose a single data model for design and constraint
data that is dynamically extended in order to store this required
information. Thereby, algorithms have a uniform interface
for accessing information which not only simplifies their
implementation but also increases their runtime efficiency.

III. DATA MODEL

At its core, our data model uses a static model that is
independent from the constraint types used in the design.
Figure 1 shows this static model anchored in the node DESIGN
which exists exactly once for each circuit. We store this AMS
IC design and constraint data as property graph. This graph
model consists of nodes and relationships, where latter are
named and directed with exactly one start and one end node.
Both nodes and relationships contain properties, described as
key-value pairs [9].

A. Library Organization

Our data model complies with the common hierarchical
design approach described in Section II. As shown in Figure 1, a
DESIGN node references zero or more LIBRARY nodes (written
as “∗” near the arrow’s head) using a relationship of type
LIBRARY. A library may belong to several designs (noted
as “∗” near the same arrow’s tail). Similarly, each library
may contain an arbitrary number of cells. The same holds
for cells referencing a set of views. Besides the name of the
element, each library, cell and view stores a time stamp of
its last modification used for database synchronization (cf.
Section IV-B). In addition, each view has a property defining
its type (e.g. “symbol”, “schematic” or “layout”). Mapping
views that assign logical and physical views to instances are
not included in our data model.



CONSTRAINT TYPE MANDATORY EXTENSION∗
EXTENSION

∗

∗
DEPENDENCY

∗

Figure 2. Graph data model for mandatory extensions required by custom
constraint types. These extensions may depend on each other, thereby forming
a dependency graph.

B. View Model

According to Figure 1, views contain INSTANCE, TERMINAL
and NET nodes. Instances represent references of other cells and,
therefore, relate to one of the symbol views of this cell using
a MASTER relationship. At the same time, an INSTANCE
relationship connects the corresponding cells. Later on, this
helps to extract the design hierarchy and to answer the question
which cell instantiates which other cells more easily. Each
parameter that applies to some instance is modeled as a separate
PARAMETER node. This includes, for instance, the width and
length of a MOS transistor and its number of fingers. The current
value of a parameter is defined using the value property of the
PARAMETER relationship connecting instance and parameter.
Default values can be set by relating libraries and/or cells with a
parameter using a likewise named relationship while specifying
its default value property.

C. Constraint Model

As shown in Figure 1, a constraint instance belongs to a
particular schematic or layout view. While local constraint mem-
bers, i.e. nets, terminals and instances, are directly referenced
using MEMBER relationships, hierarchical members require
multiple such relationships. This set of edges is sorted using the
“order” property and according to the element position in the
hierarchical member’s path as described in Section II. Thereby,
hierarchically design elements are correctly addressable. Each
constraint is associated with its constraint type, which defines
all available constraint parameters and their default values. They
can be overwritten using PARAMETER relationships to connect
constraint and parameter nodes.

D. Adaptive Model Extension

The major innovation of the proposed data model is its
adaptability. Conventional static data models for AMS IC design
decrease the efficiency of procedures requiring data that is not
available and yet has to be collected. In our case, the data model
can be extended in order to maintain fast access to required
information. On the one hand, such data model extensions can
be mandatory, thus causing global database modifications. On
the other hand, if database changes are local, the extensions of
the model are optional. When choosing the kind of extension
used for an algorithm, one has to balance between two opposing
interests: The information retrieval speed on the one side, and
the size and update time of the database on the other.

1) Mandatory Data Model Extensions: Mandatory exten-
sions to the static data model have global effects on the structure
of the database. During every data update, all these extensions
have to be respected and corresponding data has to be created or
updated accordingly. Therefore, superior information retrieval
speed later on is traded for a potentially much larger database
and slower database updates. For our application to custom
constraint types, this balance depends on how many constraints
of this type exist, how much information needs to be added to
the database and how long the information retrieval takes.

As shown in Figure 2, custom constraint types may require
multiple such extensions which might itself depend on other

extensions. An example is a constraint type whose verification
is based on the area of affected layout views. The corresponding
extension requires information on the view’s bounding box and,
therefore, on another extension for calculating and storing the
area in the database. Thus, all mandatory extensions form
a dependency graph. After topological sorting, this graph
dictates the extensions’ execution order upon data export and
synchronization. It is advisable to integrate the data model
shown in Figure 2 into the main data model of Figure 1.

2) Optional Data Model Extensions: For rarely used con-
straint types, it is not advisable to use mandatory extensions
for storing information related to constraint handling. The size
of the database would increase disproportional in relation to
the benefits. In this case, optional model extensions allow
storing this data only for local, relevant parts of the graph.
These optional model extensions are unique for each constraint
type. Every type specifies constraint handling procedures which
implicitly define these extensions simply by storing resulting
information in the database accordingly. We recommend to
perform the database update upon constraint creation. At this
time, algorithms (e.g. for constraint propagation) calculate
required information which is stored in the database together
with the operation’s result. Because such an extension is
optional, the non-existence of matching structures in parts of
the graph does not mean that corresponding design properties
are missing. The information was just not collected. Therefore,
optional model extensions must uniquely mark adjoined parts
of the graph for later identification.

Constraints add essential information to the design, and
thus, become an integral part of the design data. Therefore,
the removal of constraints is a rare occurrence but should be
supported nevertheless. Upon constraint deletion, the associated
data according to the optional data model has to be removed
from the database. If all constraints of a type are removed,
the data according to the type’s mandatory data model can be
deleted during future database synchronization tasks. For both
operations to work, all data in the database has to be uniquely
identifiable as design data, or as belonging to a particular
(mandatory or optional) data model extension.

IV. IMPLEMENTATION

The data model is one of the most critical parts of each EDA
tool. Therefore, it should be tightly integrated with the tool
for maximum performance. Cadence DF II, the testbed of our
choice, comes with its own data model and database. Hence, we
did not have the option of tight integration, and instead extended
this IC design framework using a second database based on
our model. Of course, this “shadow database” creates overhead
caused by synchronization tasks, such as data gathering, cleanup
and updating. As an example, the initial data export using the
static data model takes about 15 minutes for an industrial design
on a workstation. To mitigate this synchronization effort, partial
database updates were implemented (see Section IV-B). It must
be pointed out that this overhead is caused by our decision to
extend a commercial design system and is no inherent problem
of the novel data model.

The data model’s implementation consists of two major
parts: (1) a graph database, and (2) software components that
allow database interaction using DF II.

A. Design Tool Integration

We implemented our data model using Neo4j [10], an
open-source property graph database. It is schema-free, i.e., it
does not restrict the structure of the graph to be stored. As a
consequence, this means that any schema is implicitly defined
by the application accessing the database.



Neo4jneo4j-clientDF II
SKILL++

REST

JSON

REST

SKILL++

Figure 3. Overview of the data model integration into Cadence DF II using
SKILL++ and the graph database Neo4j.

Figure 3 shows the integration of the novel data model
into Cadence DF II using the built-in scripting language
SKILL++ [11]. The goal is to access the graph database Neo4j
using SKILL++. Neo4j runs as a server providing a REST API
for database access. Because SKILL++ does not allow direct
use of this API, we created the C program neo4j-client which
translates between the two. Using standard input/output streams,
one can use SKILL++ to send REST commands to neo4j-client.
The commands are then forwarded to Neo4j which performs
the requested database operation and responds using the JSON
format [12]. This response is later converted to SKILL++ format
by neo4j-client and can be evaluated and imported into DF II.

B. Data Export and Synchronization

During the data export, all libraries, cells and views of
the IC design are processed and the corresponding nodes and
relationships are created in the database in compliance with
the static data model. For each library, cell and view, the time
of its last modification is stored in the database. Therefore, the
next data export can skip all unmodified elements. Depending
on the number of changes, this technique allows a much faster
data export. In addition, the very same method enables the
update of modified views when a designer saves the recent
changes. Overall, the overhead of a shadow database is thereby
greatly mitigated.

V. EXAMPLES

We applied our new data model to several industrial IC
designs. The largest of those included 175 libraries, 3407 cells,
and 7396 views (among them 1348 schematic views and 1984
layouts views). The initial export to the database took about
15 minutes resulting in a graph with 167 548 nodes, 308 383
relationships, and 365 154 properties. The database has a size of
103 MB and easily fits into RAM, thus allowing fast access and
query times. As an example, querying all cells that have at least
one schematic view and are not instantiated anywhere in the
design takes about 800 ms and finds 510 cells. Using SKILL++

in Cadence DF II, the same query takes about 44 s (best of 5
runs). We could provide many more examples with a benefit
comparable to the 55-fold speed increase seen above. However,
it should be noted that these isolated examples fail to show the
key advantage of our data model. Its value results from the
increase in efficiency for all aspects of constraint engineering
including the runtime of constraint-driven design algorithms.
For each constraint, propagation taken alone performs a large
number of data queries similar to the example above, thus
multiplying the saved time.

Figure 4 shows two data model extensions that demonstrate
the adaptivity of our data model to custom constraint type
requirements. The mandatory extension in Figure 4a is used for
constraints generated during floorplanning, which include layout
alignment, and maximum area constraints. This extension adds
information about the position and bounding box of instances to
the data model. Thereby, verification and propagation of these
constraint types have direct access to required information. For
constraint types that target current mirrors, the second extension
shown in Figure 4b adds the ability to flag instances accordingly.
As a result, procedures that handle such constraints are able to

INSTANCE

position:[int,int]
bounding box:bbox

(a)

VIEW

CURRENT MIRROR

INSTANCE

1 CURRENT MIRROR∗

0..1 CM MEMBER2+

(b)

Figure 4. Two examples for data model extensions. (a) Mandatory extension for
floorplanning constraint types that adds position and bounding box information
to INSTANCE nodes (cf. Figure 1). (b) Optional extension (marked with dashed
lines) that allows to store information about current mirrors and associated
devices.

identify transistors that belong to current mirrors. This is an
optional extension, because the large number of newly created
CURRENT MIRROR nodes might otherwise lead to significant
overhead in database size and synchronization time.

VI. CONCLUSION

In this paper, we presented an adaptive data model for AMS
IC designs. This model can be applied either by integrating
its principles into database implementations of EDA tools,
or by using a shadow database as shown in this paper. It is
built around a static data model for common design data that
can adapt to emerging information requirements using data
model extensions. This is in particular beneficial for custom
constraint types, whose verification and propagation may require
information not available in static data models. Our graph-based
model was integrated into Cadence DF II using the Neo4j graph
database. Thereby, constraint-driven algorithms get uniform
access to design and constraint data potentially produced by
many different design tools of various companies. This allows
effective constraint handling and eliminates one of the main
obstacles towards the long awaited automation in AMS design.

REFERENCES

[1] R. A. Rutenbar, “Design Automation for Analog: The Next Generation
of Tool Challenges,” in Proc. Int’l Conf. on CAD, ICCAD, 2006, pp.
458–460.

[2] G. Jerke and J. Lienig, “Constraint-driven Design — The Next Step
Towards Analog Design Automation,” in Proc. Int’l Symp. on Phys.
Design, ISPD, 2009, pp. 75–82.

[3] G. Jerke, J. Lienig, and J. B. Freuer, “Constraint-Driven Design
Methodology: A Path to Analog Design Automation,” in Analog Layout
Synthesis – A Survey of Topological Approaches, H. E. Graeb, Ed. New
York: Springer, 2011, pp. 271–299.

[4] J. T. Santos, “Overview of OpenAccess: The Next-Generation Database
for IC Design,” in OpenAccess 2003 Conference, 2003.

[5] Z. Xiu, D. A. Papa, P. Chong, C. Albrecht, A. Kuehlmann, R. A. Rutenbar,
and I. L. Markov, “Early Research Experience With OpenAccess Gear:
An Open Source Development Environment For Physical Design,” in
Proc. Int’l Symp. on Phys. Design, ISPD, 2005, pp. 94–100.

[6] M. Bales, “Design Databases,” in EDA for IC Implementation, Circuit
Design, and Process Technology, Electronic Design Automation for
Integrated Circuits Handbook, L. Scheffer, L. Lavagno, and G. Martin,
Eds. Taylor & Francis, 2006, vol. 2, ch. 12.

[7] A. Krinke, M. Mittag, G. Jerke, and J. Lienig, “Extended Constraint
Management for Analog and Mixed-Signal IC Design,” in Proc. 20th
European Conf. on Circuit Theory and Design, ECCTD, 2013.

[8] N. Beldiceanu, M. Carlsson, and J.-X. Rampon, “Global Constraint
Catalog,” Swedish Institute of Computer Science (SICS), Kista, Sweden,
Tech. Rep. T2010:07, Nov. 2010.

[9] I. Robinson, J. Webber, and E. Eifrem, Graph Databases, 1st ed.
Sebastopol, CA, USA: O’Reilly, 2013.

[10] (2013) The Neo4j Website. [Online]. Available: http://www.neo4j.org
[11] T. J. Barnes, “SKILL: A CAD System Extension Language,” in Proc.

27th Design Autom. Conf., DAC, 1990, pp. 266–271.
[12] D. Crockford, “The application/json Media Type for JavaScript Object

Notation (JSON),” RFC 4627, Jul. 2006.




